Support for WebRTC data tracks (output only, for now), rewrite of dTLS integration (now part of socket lib), support for multi-path WebRTC connections

This commit is contained in:
Thulinma 2023-12-29 00:58:03 +01:00
parent 56193f89b1
commit 3987cfec3f
16 changed files with 1303 additions and 811 deletions

View file

@ -1,395 +0,0 @@
#include "defines.h"
#include "dtls_srtp_handshake.h"
#include <algorithm>
#include <string.h>
/* Write mbedtls into a log file. */
#define LOG_TO_FILE 0
#if LOG_TO_FILE
#include <fstream>
#endif
/* ----------------------------------------- */
static void print_mbedtls_error(int r);
static void print_mbedtls_debug_message(void *ctx, int level, const char *file, int line, const char *str);
static int on_mbedtls_wants_to_read(void *user, unsigned char *buf,
size_t len); /* Called when mbedtls wants to read data from e.g. a socket. */
static int on_mbedtls_wants_to_write(void *user, const unsigned char *buf,
size_t len); /* Called when mbedtls wants to write data to e.g. a socket. */
/* ----------------------------------------- */
DTLSSRTPHandshake::DTLSSRTPHandshake() : cert(NULL), key(NULL), write_callback(NULL){
memset((void *)&entropy_ctx, 0x00, sizeof(entropy_ctx));
memset((void *)&rand_ctx, 0x00, sizeof(rand_ctx));
memset((void *)&ssl_ctx, 0x00, sizeof(ssl_ctx));
memset((void *)&ssl_conf, 0x00, sizeof(ssl_conf));
memset((void *)&cookie_ctx, 0x00, sizeof(cookie_ctx));
memset((void *)&timer_ctx, 0x00, sizeof(timer_ctx));
}
int DTLSSRTPHandshake::init(mbedtls_x509_crt *certificate, mbedtls_pk_context *privateKey,
int (*writeCallback)(const uint8_t *data, int *nbytes)){
int r = 0;
mbedtls_ssl_srtp_profile srtp_profiles[] ={MBEDTLS_SRTP_AES128_CM_HMAC_SHA1_80,
MBEDTLS_SRTP_AES128_CM_HMAC_SHA1_32};
if (!writeCallback){
FAIL_MSG("No writeCallack function given.");
r = -3;
goto error;
}
if (!certificate){
FAIL_MSG("Given certificate is null.");
r = -5;
goto error;
}
if (!privateKey){
FAIL_MSG("Given key is null.");
r = -10;
goto error;
}
cert = certificate;
key = privateKey;
/* init the contexts */
mbedtls_entropy_init(&entropy_ctx);
mbedtls_ctr_drbg_init(&rand_ctx);
mbedtls_ssl_init(&ssl_ctx);
mbedtls_ssl_config_init(&ssl_conf);
mbedtls_ssl_cookie_init(&cookie_ctx);
/* seed and setup the random number generator */
r = mbedtls_ctr_drbg_seed(&rand_ctx, mbedtls_entropy_func, &entropy_ctx,
(const unsigned char *)"mist-srtp", 9);
if (0 != r){
print_mbedtls_error(r);
r = -20;
goto error;
}
/* load defaults into our ssl_conf */
r = mbedtls_ssl_config_defaults(&ssl_conf, MBEDTLS_SSL_IS_SERVER, MBEDTLS_SSL_TRANSPORT_DATAGRAM,
MBEDTLS_SSL_PRESET_DEFAULT);
if (0 != r){
print_mbedtls_error(r);
r = -30;
goto error;
}
mbedtls_ssl_conf_authmode(&ssl_conf, MBEDTLS_SSL_VERIFY_NONE);
mbedtls_ssl_conf_rng(&ssl_conf, mbedtls_ctr_drbg_random, &rand_ctx);
mbedtls_ssl_conf_dbg(&ssl_conf, print_mbedtls_debug_message, stdout);
mbedtls_ssl_conf_ca_chain(&ssl_conf, cert, NULL);
mbedtls_ssl_conf_cert_profile(&ssl_conf, &mbedtls_x509_crt_profile_default);
mbedtls_debug_set_threshold(10);
/* enable SRTP */
r = mbedtls_ssl_conf_dtls_srtp_protection_profiles(&ssl_conf, srtp_profiles,
sizeof(srtp_profiles) / sizeof(srtp_profiles[0]));
if (0 != r){
print_mbedtls_error(r);
r = -40;
goto error;
}
/* cert certificate chain + key, so we can verify the client-hello signed data */
r = mbedtls_ssl_conf_own_cert(&ssl_conf, cert, key);
if (0 != r){
print_mbedtls_error(r);
r = -50;
goto error;
}
/* cookie setup (e.g. to prevent ddos). */
r = mbedtls_ssl_cookie_setup(&cookie_ctx, mbedtls_ctr_drbg_random, &rand_ctx);
if (0 != r){
print_mbedtls_error(r);
r = -60;
goto error;
}
/* register callbacks for dtls cookies (server only). */
mbedtls_ssl_conf_dtls_cookies(&ssl_conf, mbedtls_ssl_cookie_write, mbedtls_ssl_cookie_check, &cookie_ctx);
/* setup the ssl context for use. note that ssl_conf will be referenced internall by the context and therefore should be kept around. */
r = mbedtls_ssl_setup(&ssl_ctx, &ssl_conf);
if (0 != r){
print_mbedtls_error(r);
r = -70;
goto error;
}
/* set bio handlers */
mbedtls_ssl_set_bio(&ssl_ctx, (void *)this, on_mbedtls_wants_to_write, on_mbedtls_wants_to_read, NULL);
/* set temp id, just adds some exta randomness */
{
std::string remote_id = "mist";
r = mbedtls_ssl_set_client_transport_id(&ssl_ctx, (const unsigned char *)remote_id.c_str(),
remote_id.size());
if (0 != r){
print_mbedtls_error(r);
r = -80;
goto error;
}
}
/* set timer callbacks */
mbedtls_ssl_set_timer_cb(&ssl_ctx, &timer_ctx, mbedtls_timing_set_delay, mbedtls_timing_get_delay);
write_callback = writeCallback;
error:
if (r < 0){shutdown();}
return r;
}
int DTLSSRTPHandshake::shutdown(){
/* cleanup the refs from the settings. */
cert = NULL;
key = NULL;
buffer.clear();
cipher.clear();
remote_key.clear();
remote_salt.clear();
local_key.clear();
local_salt.clear();
/* free our contexts; we do not free the `settings.cert` and `settings.key` as they are owned by the user of this class. */
mbedtls_entropy_free(&entropy_ctx);
mbedtls_ctr_drbg_free(&rand_ctx);
mbedtls_ssl_free(&ssl_ctx);
mbedtls_ssl_config_free(&ssl_conf);
mbedtls_ssl_cookie_free(&cookie_ctx);
return 0;
}
/* ----------------------------------------- */
int DTLSSRTPHandshake::parse(const uint8_t *data, size_t nbytes){
if (NULL == data){
ERROR_MSG("Given `data` is NULL.");
return -1;
}
if (0 == nbytes){
ERROR_MSG("Given nbytes is 0.");
return -2;
}
if (MBEDTLS_SSL_HANDSHAKE_OVER == ssl_ctx.state){
ERROR_MSG("Already finished the handshake.");
return -3;
}
/* copy incoming data into a temporary buffer which is read via our `bio` read function. */
int r = 0;
std::copy(data, data + nbytes, std::back_inserter(buffer));
do{
r = mbedtls_ssl_handshake(&ssl_ctx);
switch (r){
/* 0 = handshake done. */
case 0:{
if (0 != extractKeyingMaterial()){
ERROR_MSG("Failed to extract keying material after handshake was done.");
return -2;
}
return 0;
}
/* see the dtls server example; this is used to prevent certain attacks (ddos) */
case MBEDTLS_ERR_SSL_HELLO_VERIFY_REQUIRED:{
if (0 != resetSession()){
ERROR_MSG(
"Failed to reset the session which is necessary when we need to verify the HELLO.");
return -3;
}
break;
}
case MBEDTLS_ERR_SSL_WANT_READ:{
DONTEVEN_MSG(
"mbedtls wants a bit more data before it can continue parsing the DTLS handshake.");
break;
}
default:{
ERROR_MSG("A serious mbedtls error occured.");
print_mbedtls_error(r);
return -2;
}
}
}while (MBEDTLS_ERR_SSL_WANT_WRITE == r);
return 0;
}
/* ----------------------------------------- */
int DTLSSRTPHandshake::resetSession(){
std::string remote_id = "mist"; /* @todo for now we hardcoded this... */
int r = 0;
r = mbedtls_ssl_session_reset(&ssl_ctx);
if (0 != r){
print_mbedtls_error(r);
return -1;
}
r = mbedtls_ssl_set_client_transport_id(&ssl_ctx, (const unsigned char *)remote_id.c_str(),
remote_id.size());
if (0 != r){
print_mbedtls_error(r);
return -2;
}
buffer.clear();
return 0;
}
/*
master key is 128 bits => 16 bytes.
master salt is 112 bits => 14 bytes
*/
int DTLSSRTPHandshake::extractKeyingMaterial(){
int r = 0;
uint8_t keying_material[MBEDTLS_DTLS_SRTP_MAX_KEY_MATERIAL_LENGTH] ={};
size_t keying_material_len = sizeof(keying_material);
r = mbedtls_ssl_get_dtls_srtp_key_material(&ssl_ctx, keying_material, &keying_material_len);
if (0 != r){
print_mbedtls_error(r);
return -1;
}
/* @todo following code is for server mode only */
mbedtls_ssl_srtp_profile srtp_profile = mbedtls_ssl_get_dtls_srtp_protection_profile(&ssl_ctx);
switch (srtp_profile){
case MBEDTLS_SRTP_AES128_CM_HMAC_SHA1_80:{
cipher = "SRTP_AES128_CM_SHA1_80";
break;
}
case MBEDTLS_SRTP_AES128_CM_HMAC_SHA1_32:{
cipher = "SRTP_AES128_CM_SHA1_32";
break;
}
default:{
ERROR_MSG("Unhandled SRTP profile, cannot extract keying material.");
return -6;
}
}
remote_key.assign((char *)(&keying_material[0]) + 0, 16);
local_key.assign((char *)(&keying_material[0]) + 16, 16);
remote_salt.assign((char *)(&keying_material[0]) + 32, 14);
local_salt.assign((char *)(&keying_material[0]) + 46, 14);
DONTEVEN_MSG("Extracted the DTLS SRTP keying material with cipher %s.", cipher.c_str());
DONTEVEN_MSG("Remote DTLS SRTP key size is %zu.", remote_key.size());
DONTEVEN_MSG("Remote DTLS SRTP salt size is %zu.", remote_salt.size());
DONTEVEN_MSG("Local DTLS SRTP key size is %zu.", local_key.size());
DONTEVEN_MSG("Local DTLS SRTP salt size is %zu.", local_salt.size());
return 0;
}
/* ----------------------------------------- */
/*
This function is called by mbedtls whenever it wants to read
some data. The documentation states the following: "For DTLS,
you need to provide either a non-NULL f_recv_timeout
callback, or a f_recv that doesn't block." As this
implementation is completely decoupled from any I/O and uses
a "push" model instead of a "pull" model we have to copy new
input bytes into a temporary buffer (see parse), but we act
as if we were using a non-blocking socket, which means:
- we return MBETLS_ERR_SSL_WANT_READ when there is no data left to read
- when there is data in our temporary buffer, we read from that
*/
static int on_mbedtls_wants_to_read(void *user, unsigned char *buf, size_t len){
DTLSSRTPHandshake *hs = static_cast<DTLSSRTPHandshake *>(user);
if (NULL == hs){
ERROR_MSG("Failed to cast the user pointer into a DTLSSRTPHandshake.");
return -1;
}
/* figure out how much we can read. */
if (hs->buffer.size() == 0){return MBEDTLS_ERR_SSL_WANT_READ;}
size_t nbytes = hs->buffer.size();
if (nbytes > len){nbytes = len;}
/* "read" into the given buffer. */
memcpy(buf, &hs->buffer[0], nbytes);
hs->buffer.erase(hs->buffer.begin(), hs->buffer.begin() + nbytes);
return (int)nbytes;
}
static int on_mbedtls_wants_to_write(void *user, const unsigned char *buf, size_t len){
DTLSSRTPHandshake *hs = static_cast<DTLSSRTPHandshake *>(user);
if (!hs){
FAIL_MSG("Failed to cast the user pointer into a DTLSSRTPHandshake.");
return -1;
}
if (!hs->write_callback){
FAIL_MSG("The `write_callback` member is NULL.");
return -2;
}
int nwritten = (int)len;
if (0 != hs->write_callback(buf, &nwritten)){
FAIL_MSG("Failed to write some DTLS handshake data.");
return -3;
}
if (nwritten != (int)len){
FAIL_MSG("The DTLS-SRTP handshake listener MUST write all the data.");
return -4;
}
return nwritten;
}
/* ----------------------------------------- */
static void print_mbedtls_error(int r){
char buf[1024] ={};
mbedtls_strerror(r, buf, sizeof(buf));
ERROR_MSG("mbedtls error: %s", buf);
}
static void print_mbedtls_debug_message(void *ctx, int level, const char *file, int line, const char *str){
DONTEVEN_MSG("%s:%04d: %.*s", file, line, (int)strlen(str) - 1, str);
#if LOG_TO_FILE
static std::ofstream ofs;
if (!ofs.is_open()){ofs.open("mbedtls.log", std::ios::out);}
if (!ofs.is_open()){return;}
ofs << str;
ofs.flush();
#endif
}
/* ---------------------------------------- */

View file

@ -1,62 +0,0 @@
#pragma once
#include <deque>
#include <mbedtls/certs.h>
#include <mbedtls/config.h>
#include <mbedtls/ctr_drbg.h>
#include <mbedtls/debug.h>
#include <mbedtls/entropy.h>
#include <mbedtls/error.h>
#include <mbedtls/ssl.h>
#include <mbedtls/ssl_cookie.h>
#include <mbedtls/timing.h>
#include <mbedtls/x509.h>
#include <stdint.h>
/* ----------------------------------------- */
class DTLSSRTPHandshake{
public:
DTLSSRTPHandshake();
int init(mbedtls_x509_crt *certificate, mbedtls_pk_context *privateKey,
int (*writeCallback)(const uint8_t *data,
int *nbytes)); // writeCallback should return 0 on succes < 0 on error.
// nbytes holds the number of bytes to be sent and needs
// to be set to the number of bytes actually sent.
int shutdown();
int parse(const uint8_t *data, size_t nbytes);
bool hasKeyingMaterial();
private:
int extractKeyingMaterial();
int resetSession();
private:
mbedtls_x509_crt *cert; /* Certificate, we do not own the key. Make sure it's kept alive during the livetime of this class instance. */
mbedtls_pk_context *key; /* Private key, we do not own the key. Make sure it's kept alive during the livetime of this class instance. */
mbedtls_entropy_context entropy_ctx;
mbedtls_ctr_drbg_context rand_ctx;
mbedtls_ssl_context ssl_ctx;
mbedtls_ssl_config ssl_conf;
mbedtls_ssl_cookie_ctx cookie_ctx;
mbedtls_timing_delay_context timer_ctx;
public:
int (*write_callback)(const uint8_t *data, int *nbytes);
std::deque<uint8_t> buffer; /* Accessed from BIO callbback. We copy the bytes you pass into `parse()` into this
temporary buffer which is read by a trigger to `mbedlts_ssl_handshake()`. */
std::string cipher; /* selected SRTP cipher. */
std::string remote_key;
std::string remote_salt;
std::string local_key;
std::string local_salt;
};
/* ----------------------------------------- */
inline bool DTLSSRTPHandshake::hasKeyingMaterial(){
return (0 != remote_key.size() && 0 != remote_salt.size() && 0 != local_key.size() &&
0 != local_salt.size());
}
/* ----------------------------------------- */

View file

@ -12,7 +12,6 @@ headers = [
'comms.h',
'config.h',
'defines.h',
'dtls_srtp_handshake.h',
'dtsc.h',
'encryption.h',
'flv_tag.h',
@ -69,7 +68,7 @@ install_headers(headers, subdir: 'mist')
extra_code = []
if usessl
extra_code += ['dtls_srtp_handshake.cpp', 'stun.cpp', 'certificate.cpp', 'encryption.cpp',]
extra_code += ['stun.cpp', 'certificate.cpp', 'encryption.cpp',]
endif
libmist = library('mist',

View file

@ -35,6 +35,8 @@ namespace SDP{
return "AAC";
}else if (codec == "OPUS"){
return "opus";
}else if (codec == "WEBRTC-DATACHANNEL"){
return "JSON";
}else if (codec == "ULPFEC"){
return "";
}else if (codec == "RED"){
@ -67,6 +69,10 @@ namespace SDP{
return "MPA";
}else if (codec == "AAC"){
return "MPEG4-GENERIC";
}else if (codec == "JSON"){
return "WEBRTC-DATACHANNEL";
}else if (codec == "subtitle"){
return "WEBRTC-DATACHANNEL";
}else if (codec == "opus"){
return "OPUS";
}else if (codec == "ULPFEC"){
@ -277,6 +283,8 @@ namespace SDP{
type = "audio";
}else if (words[0] == "m=video"){
type = "video";
}else if (words[0] == "m=application"){
type = "meta";
}else{
ERROR_MSG("Unhandled media type: `%s`.", words[0].c_str());
return false;
@ -289,6 +297,7 @@ namespace SDP{
for (size_t i = 3; i < words.size(); ++i){
SDP::MediaFormat format;
format.payloadType = JSON::Value(words[i]).asInt();
if (words[i] == "webrtc-datachannel"){format.encodingName = "WEBRTC-DATACHANNEL";}
formats[format.payloadType] = format;
if (!payloadTypes.empty()){payloadTypes += " ";}
payloadTypes += words[i];
@ -711,17 +720,11 @@ namespace SDP{
static bool sdp_get_name_value_from_varval(const std::string &str, std::string &var, std::string &value){
if (str.empty()){
ERROR_MSG("Cannot get `name` and `value` from string because the given string is empty. "
"String is: `%s`",
str.c_str());
return false;
}
size_t pos = str.find("=");
if (pos == std::string::npos){
WARN_MSG("Cannot get `name` and `value` from string becuase it doesn't contain a `=` sign. "
"String is: `%s`. Returning the string as is.",
str.c_str());
value = str;
return true;
}
@ -776,7 +779,7 @@ namespace SDP{
}
Answer::Answer()
: isAudioEnabled(false), isVideoEnabled(false), candidatePort(0),
: isAudioEnabled(false), isVideoEnabled(false), isMetaEnabled(false), candidatePort(0),
videoLossPrevention(SDP_LOSS_PREVENTION_NONE){}
bool Answer::parseOffer(const std::string &sdp){
@ -817,6 +820,15 @@ namespace SDP{
return true;
}
bool Answer::enableMeta(const std::string &codecName){
if (!enableMedia("meta", codecName, answerMetaMedia, answerMetaFormat)){
DONTEVEN_MSG("Not enabling meta.");
return false;
}
isMetaEnabled = true;
return true;
}
void Answer::setCandidate(const std::string &ip, uint16_t port){
if (ip.empty()){WARN_MSG("Given candidate IP is empty. It's fine if you want to unset it.");}
candidateIP = ip;
@ -934,7 +946,7 @@ namespace SDP{
bool isEnabled = false;
std::vector<uint8_t> supportedPayloadTypes;
if (type != "audio" && type != "video"){continue;}
if (type != "audio" && type != "video" && type != "meta"){continue;}
// port = 9 (default), port = 0 (disable this media)
if (type == "audio"){
@ -947,6 +959,10 @@ namespace SDP{
fmtMedia = &answerVideoFormat;
fmtRED = media->getFormatForEncodingName("RED");
fmtULPFEC = media->getFormatForEncodingName("ULPFEC");
}else if (type == "meta"){
isEnabled = isMetaEnabled;
media = &answerMetaMedia;
fmtMedia = &answerMetaFormat;
}
if (!media){
@ -975,10 +991,17 @@ namespace SDP{
}
std::string payloadTypes = ss.str();
std::string protocol = "UDP/TLS/RTP/SAVPF";
if (type == "meta"){
protocol = "UDP/DTLS/SCTP";
payloadTypes = "webrtc-datachannel";
type = "application";
}
if (isEnabled){
addLine("m=%s 9 UDP/TLS/RTP/SAVPF %s", type.c_str(), payloadTypes.c_str());
addLine("m=%s 9 %s %s", type.c_str(), protocol.c_str(), payloadTypes.c_str());
}else{
addLine("m=%s %u UDP/TLS/RTP/SAVPF %s", type.c_str(), 0, mediaOffer.payloadTypes.c_str());
addLine("m=%s %u %s %s", type.c_str(), 0, protocol.c_str(), mediaOffer.payloadTypes.c_str());
}
addLine("c=IN IP4 0.0.0.0");
@ -996,9 +1019,14 @@ namespace SDP{
addLine("a=fingerprint:sha-256 %s", fingerprint.c_str());
addLine("a=ice-ufrag:%s", fmtMedia->iceUFrag.c_str());
addLine("a=ice-pwd:%s", fmtMedia->icePwd.c_str());
if (type == "application"){
addLine("a=sctp-port:5000");
addLine("a=max-message-size:262144");
}else{
addLine("a=rtcp-mux");
addLine("a=rtcp-rsize");
addLine("a=%s", fmtMedia->rtpmap.c_str());
}
// BEGIN FEC/RTX: testing with just FEC or RTX
if ((videoLossPrevention & SDP_LOSS_PREVENTION_ULPFEC) && fmtRED && fmtULPFEC){
@ -1136,14 +1164,11 @@ namespace SDP{
return false;
}
INFO_MSG("Enabling media for codec: %s", format->encodingName.c_str());
outMedia = *media;
outFormat = *format;
outFormat.rtcpFormats.clear();
outFormat.icePwd = generateIcePwd();
outFormat.iceUFrag = generateIceUFrag();
return true;
}

View file

@ -167,6 +167,7 @@ namespace SDP{
bool hasAudio(); ///< Check if the offer has audio.
bool enableVideo(const std::string &codecName);
bool enableAudio(const std::string &codecName);
bool enableMeta(const std::string &codecName);
void setCandidate(const std::string &ip, uint16_t port);
void setFingerprint(const std::string &fingerprintSha); ///< Set the SHA265 that represents the
///< certificate that is used with DTLS.
@ -189,10 +190,13 @@ namespace SDP{
SDP::Session sdpOffer;
SDP::Media answerVideoMedia;
SDP::Media answerAudioMedia;
SDP::Media answerMetaMedia;
SDP::MediaFormat answerVideoFormat;
SDP::MediaFormat answerAudioFormat;
SDP::MediaFormat answerMetaFormat;
bool isAudioEnabled;
bool isVideoEnabled;
bool isMetaEnabled;
std::string candidateIP; ///< We use rtcp-mux and BUNDLE; so only one candidate necessary.
uint16_t candidatePort; ///< We use rtcp-mux and BUNDLE; so only one candidate necessary.
std::string fingerprint;

View file

@ -14,6 +14,7 @@
#include <sstream>
#include <sys/socket.h>
#include <sys/stat.h>
#include <fstream>
#define BUFFER_BLOCKSIZE 4096 // set buffer blocksize to 4KiB
@ -1603,35 +1604,197 @@ int Socket::Server::getSocket(){
return sock;
}
static int dTLS_recv(void *s, unsigned char *buf, size_t len){
return ((Socket::UDPConnection*)s)->dTLSRead(buf, len);
}
static int dTLS_send(void *s, const unsigned char *buf, size_t len){
return ((Socket::UDPConnection*)s)->dTLSWrite(buf, len);
}
/// Create a new UDP Socket.
/// Will attempt to create an IPv6 UDP socket, on fail try a IPV4 UDP socket.
/// If both fail, prints an DLVL_FAIL debug message.
/// \param nonblock Whether the socket should be nonblocking.
Socket::UDPConnection::UDPConnection(bool nonblock){
init(nonblock);
}// Socket::UDPConnection UDP Contructor
void Socket::UDPConnection::init(bool _nonblock, int _family){
lastPace = 0;
boundPort = 0;
family = AF_INET6;
sock = socket(AF_INET6, SOCK_DGRAM, 0);
if (sock == -1){
family = _family;
hasDTLS = false;
isConnected = false;
wasEncrypted = false;
pretendReceive = false;
sock = socket(family, SOCK_DGRAM, 0);
if (sock == -1 && family == AF_INET6){
sock = socket(AF_INET, SOCK_DGRAM, 0);
family = AF_INET;
}
if (sock == -1){
FAIL_MSG("Could not create UDP socket: %s", strerror(errno));
}else{
if (nonblock){setBlocking(!nonblock);}
isBlocking = !_nonblock;
if (_nonblock){setBlocking(!_nonblock);}
checkRecvBuf();
}
{
// Allow address re-use
int on = 1;
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
}
up = 0;
down = 0;
destAddr = 0;
destAddr_size = 0;
recvAddr = 0;
recvAddr_size = 0;
hasReceiveData = false;
#ifdef __CYGWIN__
data.allocate(SOCKETSIZE);
#else
data.allocate(2048);
#endif
}// Socket::UDPConnection UDP Contructor
}
void Socket::UDPConnection::initDTLS(mbedtls_x509_crt *cert, mbedtls_pk_context *key){
hasDTLS = true;
nextDTLSRead = 0;
nextDTLSReadLen = 0;
int r = 0;
char mbedtls_msg[1024];
// Null out the contexts before use
memset((void *)&entropy_ctx, 0x00, sizeof(entropy_ctx));
memset((void *)&rand_ctx, 0x00, sizeof(rand_ctx));
memset((void *)&ssl_ctx, 0x00, sizeof(ssl_ctx));
memset((void *)&ssl_conf, 0x00, sizeof(ssl_conf));
memset((void *)&cookie_ctx, 0x00, sizeof(cookie_ctx));
memset((void *)&timer_ctx, 0x00, sizeof(timer_ctx));
// Initialize contexts
mbedtls_entropy_init(&entropy_ctx);
mbedtls_ctr_drbg_init(&rand_ctx);
mbedtls_ssl_init(&ssl_ctx);
mbedtls_ssl_config_init(&ssl_conf);
mbedtls_ssl_cookie_init(&cookie_ctx);
/* seed and setup the random number generator */
r = mbedtls_ctr_drbg_seed(&rand_ctx, mbedtls_entropy_func, &entropy_ctx, (const unsigned char *)"mist-srtp", 9);
if (r){
mbedtls_strerror(r, mbedtls_msg, sizeof(mbedtls_msg));
FAIL_MSG("dTLS could not init drbg seed: %s", mbedtls_msg);
return;
}
/* load defaults into our ssl_conf */
r = mbedtls_ssl_config_defaults(&ssl_conf, MBEDTLS_SSL_IS_SERVER, MBEDTLS_SSL_TRANSPORT_DATAGRAM,
MBEDTLS_SSL_PRESET_DEFAULT);
if (r){
mbedtls_strerror(r, mbedtls_msg, sizeof(mbedtls_msg));
FAIL_MSG("dTLS could not set defaults: %s", mbedtls_msg);
return;
}
mbedtls_ssl_conf_authmode(&ssl_conf, MBEDTLS_SSL_VERIFY_NONE);
mbedtls_ssl_conf_rng(&ssl_conf, mbedtls_ctr_drbg_random, &rand_ctx);
mbedtls_ssl_conf_ca_chain(&ssl_conf, cert, NULL);
mbedtls_ssl_conf_cert_profile(&ssl_conf, &mbedtls_x509_crt_profile_default);
//mbedtls_ssl_conf_dbg(&ssl_conf, print_mbedtls_debug_message, stdout);
//mbedtls_debug_set_threshold(10);
// enable SRTP support (non-fatal on error)
mbedtls_ssl_srtp_profile srtpPro[] ={MBEDTLS_SRTP_AES128_CM_HMAC_SHA1_80, MBEDTLS_SRTP_AES128_CM_HMAC_SHA1_32};
r = mbedtls_ssl_conf_dtls_srtp_protection_profiles(&ssl_conf, srtpPro, sizeof(srtpPro) / sizeof(srtpPro[0]));
if (r){
mbedtls_strerror(r, mbedtls_msg, sizeof(mbedtls_msg));
WARN_MSG("dTLS could not set SRTP profiles: %s", mbedtls_msg);
}
/* cert certificate chain + key, so we can verify the client-hello signed data */
r = mbedtls_ssl_conf_own_cert(&ssl_conf, cert, key);
if (r){
mbedtls_strerror(r, mbedtls_msg, sizeof(mbedtls_msg));
FAIL_MSG("dTLS could not set certificate: %s", mbedtls_msg);
return;
}
// cookie setup (to prevent ddos, server-only)
r = mbedtls_ssl_cookie_setup(&cookie_ctx, mbedtls_ctr_drbg_random, &rand_ctx);
if (r){
mbedtls_strerror(r, mbedtls_msg, sizeof(mbedtls_msg));
FAIL_MSG("dTLS could not set SSL cookie: %s", mbedtls_msg);
return;
}
mbedtls_ssl_conf_dtls_cookies(&ssl_conf, mbedtls_ssl_cookie_write, mbedtls_ssl_cookie_check, &cookie_ctx);
// setup the ssl context
r = mbedtls_ssl_setup(&ssl_ctx, &ssl_conf);
if (r){
mbedtls_strerror(r, mbedtls_msg, sizeof(mbedtls_msg));
FAIL_MSG("dTLS could not setup: %s", mbedtls_msg);
return;
}
// set input/output callbacks
mbedtls_ssl_set_bio(&ssl_ctx, (void *)this, dTLS_send, dTLS_recv, NULL);
mbedtls_ssl_set_timer_cb(&ssl_ctx, &timer_ctx, mbedtls_timing_set_delay, mbedtls_timing_get_delay);
// set transport ID (non-fatal on error)
r = mbedtls_ssl_set_client_transport_id(&ssl_ctx, (const unsigned char *)"mist", 4);
if (r){
mbedtls_strerror(r, mbedtls_msg, sizeof(mbedtls_msg));
WARN_MSG("dTLS could not set transport ID: %s", mbedtls_msg);
}
}
void Socket::UDPConnection::deinitDTLS(){
if (hasDTLS){
mbedtls_entropy_free(&entropy_ctx);
mbedtls_ctr_drbg_free(&rand_ctx);
mbedtls_ssl_free(&ssl_ctx);
mbedtls_ssl_config_free(&ssl_conf);
mbedtls_ssl_cookie_free(&cookie_ctx);
hasDTLS = true;
}
}
int Socket::UDPConnection::dTLSRead(unsigned char *buf, size_t _len){
if (!nextDTLSReadLen){return MBEDTLS_ERR_SSL_WANT_READ;}
size_t len = _len;
if (len > nextDTLSReadLen){len = nextDTLSReadLen;}
memcpy(buf, nextDTLSRead, len);
nextDTLSReadLen = 0;
return len;
}
int Socket::UDPConnection::dTLSWrite(const unsigned char *buf, size_t len){
sendPaced((const char *)buf, len, false);
return len;
}
void Socket::UDPConnection::dTLSReset(){
char mbedtls_msg[1024];
int r = mbedtls_ssl_session_reset(&ssl_ctx);
if (r){
mbedtls_strerror(r, mbedtls_msg, sizeof(mbedtls_msg));
FAIL_MSG("dTLS could not reset session: %s", mbedtls_msg);
return;
}
// set transport ID (non-fatal on error)
r = mbedtls_ssl_set_client_transport_id(&ssl_ctx, (const unsigned char *)"mist", 4);
if (r){
mbedtls_strerror(r, mbedtls_msg, sizeof(mbedtls_msg));
WARN_MSG("dTLS could not set transport ID: %s", mbedtls_msg);
}
}
///Checks if the UDP receive buffer is at least 1 mbyte, attempts to increase and warns user through log message on failure.
void Socket::UDPConnection::checkRecvBuf(){
@ -1681,27 +1844,23 @@ void Socket::UDPConnection::checkRecvBuf(){
/// Copies a UDP socket, re-allocating local copies of any needed structures.
/// The data/data_size/data_len variables are *not* copied over.
Socket::UDPConnection::UDPConnection(const UDPConnection &o){
lastPace = 0;
boundPort = 0;
family = AF_INET6;
sock = socket(AF_INET6, SOCK_DGRAM, 0);
if (sock == -1){
sock = socket(AF_INET, SOCK_DGRAM, 0);
family = AF_INET;
}
if (sock == -1){FAIL_MSG("Could not create UDP socket: %s", strerror(errno));}
checkRecvBuf();
up = 0;
down = 0;
init(!o.isBlocking, o.family);
INFO_MSG("Copied socket of type %s", addrFam(o.family));
if (o.destAddr && o.destAddr_size){
destAddr = malloc(o.destAddr_size);
destAddr_size = o.destAddr_size;
if (destAddr){memcpy(destAddr, o.destAddr, o.destAddr_size);}
}else{
destAddr = 0;
destAddr_size = 0;
}
data.allocate(2048);
if (o.recvAddr && o.recvAddr_size){
recvAddr = malloc(o.recvAddr_size);
recvAddr_size = o.recvAddr_size;
if (recvAddr){memcpy(recvAddr, o.recvAddr, o.recvAddr_size);}
}
if (o.data.size()){
data.assign(o.data, o.data.size());
pretendReceive = true;
}
hasReceiveData = o.hasReceiveData;
}
/// Close the UDP socket
@ -1720,7 +1879,34 @@ Socket::UDPConnection::~UDPConnection(){
free(destAddr);
destAddr = 0;
}
if (recvAddr){
free(recvAddr);
recvAddr = 0;
}
deinitDTLS();
}
bool Socket::UDPConnection::operator==(const Socket::UDPConnection& b) const{
// UDP sockets are equal if they refer to the same underlying socket or are both closed
if (sock == b.sock){return true;}
// If either is closed (and the other is not), not equal.
if (sock == -1 || b.sock == -1){return false;}
size_t recvSize = recvAddr_size;
if (b.recvAddr_size < recvSize){recvSize = b.recvAddr_size;}
size_t destSize = destAddr_size;
if (b.destAddr_size < destSize){destSize = b.destAddr_size;}
// They are equal if they hold the same local and remote address.
if (recvSize && destSize && destAddr && b.destAddr && recvAddr && b.recvAddr){
if (!memcmp(recvAddr, b.recvAddr, recvSize) && !memcmp(destAddr, b.destAddr, destSize)){
return true;
}
}
// All other cases, not equal
return false;
}
Socket::UDPConnection::operator bool() const{return sock != -1;}
// Sets socket family type (to IPV4 or IPV6) (AF_INET=2, AF_INET6=10)
void Socket::UDPConnection::setSocketFamily(int AF_TYPE){\
@ -1742,6 +1928,22 @@ void Socket::UDPConnection::allocateDestination(){
((struct sockaddr_in *)destAddr)->sin_family = AF_UNSPEC;
}
}
if (recvAddr && recvAddr_size < sizeof(sockaddr_in6)){
free(recvAddr);
recvAddr = 0;
}
if (!recvAddr){
recvAddr = malloc(sizeof(sockaddr_in6));
if (recvAddr){
recvAddr_size = sizeof(sockaddr_in6);
memset(recvAddr, 0, sizeof(sockaddr_in6));
((struct sockaddr_in *)recvAddr)->sin_family = AF_UNSPEC;
}
const int opt = 1;
if (setsockopt(sock, IPPROTO_IP, IP_PKTINFO, &opt, sizeof(opt))){
WARN_MSG("Could not set PKTINFO to 1!");
}
}
}
/// Stores the properties of the receiving end of this UDP socket.
@ -1788,6 +1990,11 @@ void Socket::UDPConnection::SetDestination(std::string destIp, uint32_t port){
close();
family = rp->ai_family;
sock = socket(family, SOCK_DGRAM, 0);
{
// Allow address re-use
int on = 1;
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
}
checkRecvBuf();
if (boundPort){
INFO_MSG("Rebinding to %s:%d %s", boundAddr.c_str(), boundPort, boundMulti.c_str());
@ -1839,6 +2046,35 @@ void Socket::UDPConnection::GetDestination(std::string &destIp, uint32_t &port){
FAIL_MSG("Could not get destination for UDP socket");
}// Socket::UDPConnection GetDestination
/// Gets the properties of the receiving end of the local UDP socket.
/// This will be the sending end for all SendNow calls.
void Socket::UDPConnection::GetLocalDestination(std::string &destIp, uint32_t &port){
if (!recvAddr || !recvAddr_size){
destIp = "";
port = 0;
return;
}
char addr_str[INET6_ADDRSTRLEN + 1];
addr_str[INET6_ADDRSTRLEN] = 0; // set last byte to zero, to prevent walking out of the array
if (((struct sockaddr_in *)recvAddr)->sin_family == AF_INET6){
if (inet_ntop(AF_INET6, &(((struct sockaddr_in6 *)recvAddr)->sin6_addr), addr_str, INET6_ADDRSTRLEN) != 0){
destIp = addr_str;
port = ntohs(((struct sockaddr_in6 *)recvAddr)->sin6_port);
return;
}
}
if (((struct sockaddr_in *)recvAddr)->sin_family == AF_INET){
if (inet_ntop(AF_INET, &(((struct sockaddr_in *)recvAddr)->sin_addr), addr_str, INET6_ADDRSTRLEN) != 0){
destIp = addr_str;
port = ntohs(((struct sockaddr_in *)recvAddr)->sin_port);
return;
}
}
destIp = "";
port = 0;
FAIL_MSG("Could not get destination for UDP socket");
}// Socket::UDPConnection GetDestination
/// Gets the properties of the receiving end of this UDP socket.
/// This will be the receiving end for all SendNow calls.
std::string Socket::UDPConnection::getBinDestination(){
@ -1864,7 +2100,10 @@ uint32_t Socket::UDPConnection::getDestPort() const{
/// Sets the socket to be blocking if the parameters is true.
/// Sets the socket to be non-blocking otherwise.
void Socket::UDPConnection::setBlocking(bool blocking){
if (sock >= 0){setFDBlocking(sock, blocking);}
if (sock >= 0){
setFDBlocking(sock, blocking);
isBlocking = blocking;
}
}
/// Sends a UDP datagram using the buffer sdata.
@ -1885,19 +2124,83 @@ void Socket::UDPConnection::SendNow(const char *sdata){
/// Does not do anything if len < 1.
/// Prints an DLVL_FAIL level debug message if sending failed.
void Socket::UDPConnection::SendNow(const char *sdata, size_t len){
if (len < 1){return;}
int r = sendto(sock, sdata, len, 0, (sockaddr *)destAddr, destAddr_size);
SendNow(sdata, len, (sockaddr*)destAddr, destAddr_size);
}
/// Sends a UDP datagram using the buffer sdata of length len.
/// Does not do anything if len < 1.
/// Prints an DLVL_FAIL level debug message if sending failed.
void Socket::UDPConnection::SendNow(const char *sdata, size_t len, sockaddr * dAddr, size_t dAddrLen){
if (len < 1 || sock == -1){return;}
if (isConnected){
int r = send(sock, sdata, len, 0);
if (r > 0){
up += r;
}else{
if (errno == EDESTADDRREQ){
close();
return;
}
FAIL_MSG("Could not send UDP data through %d: %s", sock, strerror(errno));
}
return;
}
if (hasReceiveData && recvAddr){
msghdr mHdr;
char msg_control[0x100];
iovec iovec;
iovec.iov_base = (void*)sdata;
iovec.iov_len = len;
mHdr.msg_name = dAddr;
mHdr.msg_namelen = dAddrLen;
mHdr.msg_iov = &iovec;
mHdr.msg_iovlen = 1;
mHdr.msg_control = msg_control;
mHdr.msg_controllen = sizeof(msg_control);
mHdr.msg_flags = 0;
int cmsg_space = 0;
cmsghdr * cmsg = CMSG_FIRSTHDR(&mHdr);
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_PKTINFO;
struct in_pktinfo in_pktinfo;
memcpy(&(in_pktinfo.ipi_spec_dst), &(((sockaddr_in*)recvAddr)->sin_family), sizeof(in_pktinfo.ipi_spec_dst));
in_pktinfo.ipi_ifindex = recvInterface;
cmsg->cmsg_len = CMSG_LEN(sizeof(in_pktinfo));
*(struct in_pktinfo*)CMSG_DATA(cmsg) = in_pktinfo;
cmsg_space += CMSG_SPACE(sizeof(in_pktinfo));
mHdr.msg_controllen = cmsg_space;
int r = sendmsg(sock, &mHdr, 0);
if (r > 0){
up += r;
}else{
FAIL_MSG("Could not send UDP data through %d: %s", sock, strerror(errno));
}
return;
}else{
int r = sendto(sock, sdata, len, 0, dAddr, dAddrLen);
if (r > 0){
up += r;
}else{
FAIL_MSG("Could not send UDP data through %d: %s", sock, strerror(errno));
}
}
}
/// Queues sdata, len for sending over this socket.
/// If there has been enough time since the last packet, sends immediately.
/// Warning: never call sendPaced for the same socket from a different thread!
void Socket::UDPConnection::sendPaced(const char *sdata, size_t len){
/// Note: Only actually encrypts if initDTLS was called in the past.
void Socket::UDPConnection::sendPaced(const char *sdata, size_t len, bool encrypt){
if (hasDTLS && encrypt){
if (ssl_ctx.state != MBEDTLS_SSL_HANDSHAKE_OVER){
WARN_MSG("Attempting to write encrypted data before handshake completed! Data was thrown away.");
return;
}
int write = mbedtls_ssl_write(&ssl_ctx, (unsigned char*)sdata, len);
if (write <= 0){WARN_MSG("Could not write DTLS packet!");}
}else{
if (!paceQueue.size() && (!lastPace || Util::getMicros(lastPace) > 10000)){
SendNow(sdata, len);
lastPace = Util::getMicros();
@ -1908,41 +2211,59 @@ void Socket::UDPConnection::sendPaced(const char *sdata, size_t len){
//sendPaced(0);
}
}
}
// Gets time in microseconds until next sendPaced call would send something
size_t Socket::UDPConnection::timeToNextPace(uint64_t uTime){
size_t qSize = paceQueue.size();
if (!qSize){return std::string::npos;} // No queue? No time. Return highest possible value.
if (!uTime){uTime = Util::getMicros();}
uint64_t paceWait = uTime - lastPace; // Time we've waited so far already
// Target clearing the queue in 25ms at most.
uint64_t targetTime = 25000 / qSize;
// If this slows us to below 1 packet per 5ms, go that speed instead.
if (targetTime > 5000){targetTime = 5000;}
// If the wait is over, send now.
if (paceWait >= targetTime){return 0;}
// Return remaining wait time
return targetTime - paceWait;
}
/// Spends uSendWindow microseconds either sending paced packets or sleeping, whichever is more appropriate
/// Warning: never call sendPaced for the same socket from a different thread!
void Socket::UDPConnection::sendPaced(uint64_t uSendWindow){
uint64_t currPace = Util::getMicros();
uint64_t uTime = currPace;
do{
uint64_t uTime = Util::getMicros();
uint64_t sleepTime = uTime - currPace;
if (sleepTime > uSendWindow){
sleepTime = 0;
}else{
sleepTime = uSendWindow - sleepTime;
}
uint64_t paceWait = uTime - lastPace;
size_t qSize = paceQueue.size();
// If the queue is complete, wait out the remainder of the time
if (!qSize){
Util::usleep(sleepTime);
return;
}
// Otherwise, target clearing the queue in 25ms at most.
uint64_t targetTime = 25000 / qSize;
// If this slows us to below 1 packet per 5ms, go that speed instead.
if (targetTime > 5000){targetTime = 5000;}
// If the wait is over, send now.
if (paceWait >= targetTime){
uint64_t sleepTime = uSendWindow - (uTime - currPace);
uint64_t nextPace = timeToNextPace(uTime);
if (sleepTime > nextPace){sleepTime = nextPace;}
// Not sleeping? Send now!
if (!sleepTime){
SendNow(*paceQueue.begin(), paceQueue.begin()->size());
paceQueue.pop_front();
lastPace = uTime;
continue;
}
// Otherwise, wait for the smaller of remaining wait time or remaining send window time.
if (targetTime - paceWait < sleepTime){sleepTime = targetTime - paceWait;}
Util::usleep(sleepTime);
}while(Util::getMicros(currPace) < uSendWindow);
{
// Use select to wait until a packet arrives or until the next packet should be sent
fd_set rfds;
struct timeval T;
T.tv_sec = sleepTime / 1000000;
T.tv_usec = sleepTime % 1000000;
// Watch configured FD's for input
FD_ZERO(&rfds);
int maxFD = getSock();
FD_SET(maxFD, &rfds);
int r = select(maxFD + 1, &rfds, NULL, NULL, &T);
// If we can read the socket, immediately return and stop waiting
if (r > 0){return;}
}
uTime = Util::getMicros();
}while(uTime - currPace < uSendWindow);
}
std::string Socket::UDPConnection::getBoundAddress(){
@ -1995,6 +2316,11 @@ uint16_t Socket::UDPConnection::bind(int port, std::string iface, const std::str
for (rp = addr_result; rp != NULL; rp = rp->ai_next){
sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (sock == -1){continue;}
{
// Allow address re-use
int on = 1;
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
}
if (rp->ai_family == AF_INET6){
const int optval = 0;
if (setsockopt(sock, SOL_SOCKET, IPV6_V6ONLY, &optval, sizeof(optval)) < 0){
@ -2046,7 +2372,7 @@ uint16_t Socket::UDPConnection::bind(int port, std::string iface, const std::str
boundAddr = iface;
boundMulti = multicastInterfaces;
boundPort = portNo;
INFO_MSG("UDP bind success on %s:%u (%s)", human_addr, portNo, addrFam(rp->ai_family));
INFO_MSG("UDP bind success %d on %s:%u (%s)", sock, human_addr, portNo, addrFam(rp->ai_family));
break;
}
if (err_str.size()){err_str += ", ";}
@ -2144,21 +2470,135 @@ uint16_t Socket::UDPConnection::bind(int port, std::string iface, const std::str
return portNo;
}
bool Socket::UDPConnection::connect(){
if (!recvAddr || !recvAddr_size || !destAddr || !destAddr_size){
WARN_MSG("Attempting to connect a UDP socket without local and/or remote address!");
return false;
}
{
std::string destIp;
uint32_t port = 0;
char addr_str[INET6_ADDRSTRLEN + 1];
if (((struct sockaddr_in *)recvAddr)->sin_family == AF_INET6){
if (inet_ntop(AF_INET6, &(((struct sockaddr_in6 *)recvAddr)->sin6_addr), addr_str, INET6_ADDRSTRLEN) != 0){
destIp = addr_str;
port = ntohs(((struct sockaddr_in6 *)recvAddr)->sin6_port);
}
}
if (((struct sockaddr_in *)recvAddr)->sin_family == AF_INET){
if (inet_ntop(AF_INET, &(((struct sockaddr_in *)recvAddr)->sin_addr), addr_str, INET6_ADDRSTRLEN) != 0){
destIp = addr_str;
port = ntohs(((struct sockaddr_in *)recvAddr)->sin_port);
}
}
int ret = ::bind(sock, (const struct sockaddr*)recvAddr, recvAddr_size);
if (!ret){
INFO_MSG("Bound socket %d to %s:%" PRIu32, sock, destIp.c_str(), port);
}else{
FAIL_MSG("Failed to bind socket %d (%s) %s:%" PRIu32 ": %s", sock, addrFam(((struct sockaddr_in *)recvAddr)->sin_family), destIp.c_str(), port, strerror(errno));
std::ofstream bleh("/tmp/socket_recv");
bleh.write((const char*)recvAddr, recvAddr_size);
bleh.write((const char*)destAddr, destAddr_size);
bleh.close();
return false;
}
}
{
std::string destIp;
uint32_t port;
char addr_str[INET6_ADDRSTRLEN + 1];
if (((struct sockaddr_in *)destAddr)->sin_family == AF_INET6){
if (inet_ntop(AF_INET6, &(((struct sockaddr_in6 *)destAddr)->sin6_addr), addr_str, INET6_ADDRSTRLEN) != 0){
destIp = addr_str;
port = ntohs(((struct sockaddr_in6 *)destAddr)->sin6_port);
}
}
if (((struct sockaddr_in *)destAddr)->sin_family == AF_INET){
if (inet_ntop(AF_INET, &(((struct sockaddr_in *)destAddr)->sin_addr), addr_str, INET6_ADDRSTRLEN) != 0){
destIp = addr_str;
port = ntohs(((struct sockaddr_in *)destAddr)->sin_port);
}
}
int ret = ::connect(sock, (const struct sockaddr*)destAddr, destAddr_size);
if (!ret){
INFO_MSG("Connected socket to %s:%" PRIu32, destIp.c_str(), port);
}else{
FAIL_MSG("Failed to connect socket to %s:%" PRIu32 ": %s", destIp.c_str(), port, strerror(errno));
return false;
}
}
isConnected = true;
return true;
}
/// Attempt to receive a UDP packet.
/// This will automatically allocate or resize the internal data buffer if needed.
/// If a packet is received, it will be placed in the "data" member, with it's length in "data_len".
/// \return True if a packet was received, false otherwise.
bool Socket::UDPConnection::Receive(){
if (pretendReceive){
pretendReceive = false;
return onData();
}
if (sock == -1){return false;}
data.truncate(0);
if (isConnected){
int r = recv(sock, data, data.rsize(), MSG_TRUNC | MSG_DONTWAIT);
if (r == -1){
if (errno != EAGAIN){
INFO_MSG("UDP receive: %d (%s)", errno, strerror(errno));
if (errno == ECONNREFUSED){close();}
}
return false;
}
if (r > 0){
data.append(0, r);
down += r;
if (data.rsize() < (unsigned int)r){
INFO_MSG("Doubling UDP socket buffer from %" PRIu32 " to %" PRIu32, data.rsize(), data.rsize()*2);
data.allocate(data.rsize()*2);
}
return onData();
}
return false;
}
sockaddr_in6 addr;
socklen_t destsize = sizeof(addr);
int r = recvfrom(sock, data, data.rsize(), MSG_TRUNC | MSG_DONTWAIT, (sockaddr *)&addr, &destsize);
//int r = recvfrom(sock, data, data.rsize(), MSG_TRUNC | MSG_DONTWAIT, (sockaddr *)&addr, &destsize);
msghdr mHdr;
memset(&mHdr, 0, sizeof(mHdr));
char ctrl[0x100];
iovec dBufs;
dBufs.iov_base = data;
dBufs.iov_len = data.rsize();
mHdr.msg_name = &addr;
mHdr.msg_namelen = destsize;
mHdr.msg_control = ctrl;
mHdr.msg_controllen = 0x100;
mHdr.msg_iov = &dBufs;
mHdr.msg_iovlen = 1;
int r = recvmsg(sock, &mHdr, MSG_TRUNC | MSG_DONTWAIT);
destsize = mHdr.msg_namelen;
if (r == -1){
if (errno != EAGAIN){INFO_MSG("UDP receive: %d (%s)", errno, strerror(errno));}
return false;
}
if (destAddr && destsize && destAddr_size >= destsize){memcpy(destAddr, &addr, destsize);}
if (recvAddr){
for ( struct cmsghdr *cmsg = CMSG_FIRSTHDR(&mHdr); cmsg != NULL; cmsg = CMSG_NXTHDR(&mHdr, cmsg)){
if (cmsg->cmsg_level != IPPROTO_IP || cmsg->cmsg_type != IP_PKTINFO){continue;}
struct in_pktinfo* pi = (in_pktinfo*)CMSG_DATA(cmsg);
struct sockaddr_in * recvCast = (sockaddr_in*)recvAddr;
recvCast->sin_family = family;
recvCast->sin_port = htons(boundPort);
memcpy(&(recvCast->sin_addr), &(pi->ipi_spec_dst), sizeof(pi->ipi_spec_dst));
recvInterface = pi->ipi_ifindex;
hasReceiveData = true;
}
}
data.append(0, r);
down += r;
//Handle UDP packets that are too large
@ -2166,7 +2606,88 @@ bool Socket::UDPConnection::Receive(){
INFO_MSG("Doubling UDP socket buffer from %" PRIu32 " to %" PRIu32, data.rsize(), data.rsize()*2);
data.allocate(data.rsize()*2);
}
return (r > 0);
return onData();
}
bool Socket::UDPConnection::onData(){
wasEncrypted = false;
if (!data.size()){return false;}
uint8_t fb = 0;
int r = data.size();
if (r){fb = (uint8_t)data[0];}
if (r && hasDTLS && fb > 19 && fb < 64){
if (nextDTLSReadLen){
INFO_MSG("Overwriting %zu bytes of unread dTLS data!", nextDTLSReadLen);
}
nextDTLSRead = data;
nextDTLSReadLen = data.size();
// Complete dTLS handshake if needed
if (ssl_ctx.state != MBEDTLS_SSL_HANDSHAKE_OVER){
do{
r = mbedtls_ssl_handshake(&ssl_ctx);
switch (r){
case 0:{ // Handshake complete
INFO_MSG("dTLS handshake complete!");
int extrRes = 0;
uint8_t keying_material[MBEDTLS_DTLS_SRTP_MAX_KEY_MATERIAL_LENGTH];
size_t keying_material_len = sizeof(keying_material);
extrRes = mbedtls_ssl_get_dtls_srtp_key_material(&ssl_ctx, keying_material, &keying_material_len);
if (extrRes){
char mbedtls_msg[1024];
mbedtls_strerror(extrRes, mbedtls_msg, sizeof(mbedtls_msg));
WARN_MSG("dTLS could not extract keying material: %s", mbedtls_msg);
return Receive();
}
mbedtls_ssl_srtp_profile srtp_profile = mbedtls_ssl_get_dtls_srtp_protection_profile(&ssl_ctx);
switch (srtp_profile){
case MBEDTLS_SRTP_AES128_CM_HMAC_SHA1_80:{
cipher = "SRTP_AES128_CM_SHA1_80";
break;
}
case MBEDTLS_SRTP_AES128_CM_HMAC_SHA1_32:{
cipher = "SRTP_AES128_CM_SHA1_32";
break;
}
default:{
WARN_MSG("Unhandled SRTP profile, cannot extract keying material.");
return Receive();
}
}
remote_key.assign((char *)(&keying_material[0]) + 0, 16);
local_key.assign((char *)(&keying_material[0]) + 16, 16);
remote_salt.assign((char *)(&keying_material[0]) + 32, 14);
local_salt.assign((char *)(&keying_material[0]) + 46, 14);
return Receive(); // No application-level data to read
}
case MBEDTLS_ERR_SSL_HELLO_VERIFY_REQUIRED:{
dTLSReset();
return Receive(); // No application-level data to read
}
case MBEDTLS_ERR_SSL_WANT_READ:{
return Receive(); // No application-level data to read
}
default:{
char mbedtls_msg[1024];
mbedtls_strerror(r, mbedtls_msg, sizeof(mbedtls_msg));
WARN_MSG("dTLS could not handshake: %s", mbedtls_msg);
return Receive(); // No application-level data to read
}
}
}while (r == MBEDTLS_ERR_SSL_WANT_WRITE);
}else{
int read = mbedtls_ssl_read(&ssl_ctx, (unsigned char *)(char*)data, data.size());
if (read <= 0){
// Non-encrypted read (encrypted read fail)
return true;
}
// Encrypted read success
wasEncrypted = true;
data.truncate(read);
return true;
}
}
return r > 0;
}
int Socket::UDPConnection::getSock(){

View file

@ -18,12 +18,14 @@
#include "util.h"
#ifdef SSL
#include "mbedtls/ctr_drbg.h"
#include "mbedtls/debug.h"
#include "mbedtls/entropy.h"
#include "mbedtls/error.h"
#include "mbedtls/net.h"
#include "mbedtls/ssl.h"
#include <mbedtls/ctr_drbg.h>
#include <mbedtls/debug.h>
#include <mbedtls/entropy.h>
#include <mbedtls/error.h>
#include <mbedtls/net.h>
#include <mbedtls/ssl.h>
#include <mbedtls/ssl_cookie.h>
#include <mbedtls/timing.h>
#endif
#include "util.h"
@ -196,10 +198,13 @@ namespace Socket{
class UDPConnection{
private:
void init(bool nonblock, int family = AF_INET6);
int sock; ///< Internally saved socket number.
std::string remotehost; ///< Stores remote host address
void *destAddr; ///< Destination address pointer.
unsigned int destAddr_size; ///< Size of the destination address pointer.
void *recvAddr; ///< Destination address pointer.
unsigned int recvAddr_size; ///< Size of the destination address pointer.
unsigned int up; ///< Amount of bytes transferred up.
unsigned int down; ///< Amount of bytes transferred down.
int family; ///< Current socket address family
@ -208,19 +213,46 @@ namespace Socket{
void checkRecvBuf();
std::deque<Util::ResizeablePointer> paceQueue;
uint64_t lastPace;
int recvInterface;
bool hasReceiveData;
bool isBlocking;
bool isConnected;
bool pretendReceive; ///< If true, will pretend to have just received the current data buffer on new Receive() call
bool onData();
// dTLS-related members
bool hasDTLS; ///< True if dTLS is enabled
void * nextDTLSRead;
size_t nextDTLSReadLen;
mbedtls_entropy_context entropy_ctx;
mbedtls_ctr_drbg_context rand_ctx;
mbedtls_ssl_context ssl_ctx;
mbedtls_ssl_config ssl_conf;
mbedtls_ssl_cookie_ctx cookie_ctx;
mbedtls_timing_delay_context timer_ctx;
public:
Util::ResizeablePointer data;
UDPConnection(const UDPConnection &o);
UDPConnection(bool nonblock = false);
~UDPConnection();
bool operator==(const UDPConnection& b) const;
operator bool() const;
void initDTLS(mbedtls_x509_crt *cert, mbedtls_pk_context *key);
void deinitDTLS();
int dTLSRead(unsigned char *buf, size_t len);
int dTLSWrite(const unsigned char *buf, size_t len);
void dTLSReset();
bool wasEncrypted;
void close();
int getSock();
uint16_t bind(int port, std::string iface = "", const std::string &multicastAddress = "");
bool connect();
void setBlocking(bool blocking);
void allocateDestination();
void SetDestination(std::string hostname, uint32_t port);
void GetDestination(std::string &hostname, uint32_t &port);
void GetLocalDestination(std::string &hostname, uint32_t &port);
std::string getBinDestination();
const void * getDestAddr(){return destAddr;}
size_t getDestAddrLen(){return destAddr_size;}
@ -230,8 +262,13 @@ namespace Socket{
void SendNow(const std::string &data);
void SendNow(const char *data);
void SendNow(const char *data, size_t len);
void sendPaced(const char * data, size_t len);
void SendNow(const char *sdata, size_t len, sockaddr * dAddr, size_t dAddrLen);
void sendPaced(const char * data, size_t len, bool encrypt = true);
void sendPaced(uint64_t uSendWindow);
size_t timeToNextPace(uint64_t uTime = 0);
void setSocketFamily(int AF_TYPE);
// dTLS-related public members
std::string cipher, remote_key, local_key, remote_salt, local_salt;
};
}// namespace Socket

View file

@ -129,6 +129,8 @@ if usessl
mist_deps += [mbedtls, mbedx509, mbedcrypto]
mist_deps += dependency('libsrtp2', default_options: ['tests=disabled'], fallback: ['libsrtp2', 'libsrtp2_dep'])
usrsctp_dep = dependency('usrsctp', fallback: ['usrsctp', 'usrsctp_dep'])
endif
libsrt = false

View file

@ -91,6 +91,7 @@ foreach output : outputs
endif
if extra.contains('srtp')
sources += files('output_webrtc_srtp.cpp', 'output_webrtc_srtp.h')
deps += usrsctp_dep
endif
if extra.contains('embed')
sources += embed_tgts

View file

@ -735,18 +735,22 @@ namespace Mist{
std::set<size_t> validTracks = M.getValidTracks();
if (!validTracks.size()){return 0;}
uint64_t start = 0xFFFFFFFFFFFFFFFFull;
uint64_t nonMetaStart = 0xFFFFFFFFFFFFFFFFull;
if (userSelect.size()){
for (std::map<size_t, Comms::Users>::iterator it = userSelect.begin(); it != userSelect.end(); it++){
if (M.trackValid(it->first) && start > M.getFirstms(it->first)){
start = M.getFirstms(it->first);
}
if (M.trackValid(it->first) && M.getType(it->first) != "meta" && nonMetaStart > M.getFirstms(it->first)){
nonMetaStart = M.getFirstms(it->first);
}
}
}else{
for (std::set<size_t>::iterator it = validTracks.begin(); it != validTracks.end(); it++){
if (start > M.getFirstms(*it)){start = M.getFirstms(*it);}
}
}
return start;
return nonMetaStart != 0xFFFFFFFFFFFFFFFFull ? nonMetaStart: start;
}
/// Return the end time of the selected tracks, or 0 if unknown or live.

File diff suppressed because it is too large Load diff

View file

@ -3,7 +3,6 @@
#include "output.h"
#include "output_http.h"
#include <mist/certificate.h>
#include <mist/dtls_srtp_handshake.h>
#include <mist/h264.h>
#include <mist/http_parser.h>
#include <mist/rtp_fec.h>
@ -14,6 +13,7 @@
#include <mist/websocket.h>
#include <fstream>
#include "output_webrtc_srtp.h"
#include <usrsctp.h>
#define NACK_BUFFER_SIZE 1024
@ -67,7 +67,19 @@ namespace Mist{
double jitter;
};
/* ------------------------------------------------ */
class WebRTCSocket{
public:
WebRTCSocket();
Socket::UDPConnection* udpSock;
SRTPReader srtpReader; ///< Used to unprotect incoming RTP and RTCP data. Uses the keys that
///< were exchanged with DTLS.
SRTPWriter srtpWriter; ///< Used to protect our RTP and RTCP data when sending data to another
///< peer. Uses the keys that were exchanged with DTLS.
std::map<uint32_t, nackBuffer> outBuffers;
size_t sendRTCP(const char * data, size_t len);
size_t ackNACK(uint32_t pSSRC, uint16_t seq);
Util::ResizeablePointer dataBuffer;
};
class OutWebRTC : public HTTPOutput{
public:
@ -82,10 +94,13 @@ namespace Mist{
virtual bool dropPushTrack(uint32_t trackId, const std::string & dropReason);
void handleWebsocketIdle();
virtual void onFail(const std::string &msg, bool critical = false);
bool onFinish();
bool doesWebsockets(){return true;}
void handleWebRTCInputOutputFromThread();
int onDTLSHandshakeWantsToWrite(const uint8_t *data, int *nbytes);
bool handleUDPSocket(Socket::UDPConnection & sock);
bool handleUDPSocket(WebRTCSocket & wSock);
void sendSCTPPacket(const char * data, size_t len);
void sendPaced(uint64_t uSendWindow);
void onSCTP(const char * data, size_t len, uint16_t stream, uint32_t ppid);
void onRTPSorterHasPacket(size_t tid, const RTP::Packet &pkt);
void onDTSCConverterHasPacket(const DTSC::Packet &pkt);
void onDTSCConverterHasInitData(const size_t trackID, const std::string &initData);
@ -95,7 +110,7 @@ namespace Mist{
inline virtual bool keepGoing(){return config->is_active && (noSignalling || myConn);}
virtual void requestHandler();
protected:
virtual void idleTime(uint64_t ms){udp.sendPaced(ms*1000);}
virtual void idleTime(uint64_t ms){sendPaced(ms*1000);}
private:
bool noSignalling;
uint64_t lastRecv;
@ -109,9 +124,8 @@ namespace Mist{
void ackNACK(uint32_t SSRC, uint16_t seq);
bool handleWebRTCInputOutput(); ///< Reads data from the UDP socket. Returns true when we read
///< some data, othewise false.
void handleReceivedSTUNPacket();
void handleReceivedDTLSPacket();
void handleReceivedRTPOrRTCPPacket();
void handleReceivedSTUNPacket(WebRTCSocket &wSock);
void handleReceivedRTPOrRTCPPacket(WebRTCSocket &wSock);
bool handleSignalingCommandRemoteOfferForInput(SDP::Session &sdpSession);
bool handleSignalingCommandRemoteOfferForOutput(SDP::Session &sdpSession);
void sendSignalingError(const std::string &commandType, const std::string &errorMessage);
@ -136,20 +150,19 @@ namespace Mist{
SDP::Session sdp; ///< SDP parser.
SDP::Answer sdpAnswer; ///< WIP: Replacing our `sdp` member ..
Certificate cert; ///< The TLS certificate. Used to generate a fingerprint in SDP answers.
DTLSSRTPHandshake dtlsHandshake; ///< Implements the DTLS handshake using the mbedtls library (fork).
SRTPReader srtpReader; ///< Used to unprotect incoming RTP and RTCP data. Uses the keys that
///< were exchanged with DTLS.
SRTPWriter srtpWriter; ///< Used to protect our RTP and RTCP data when sending data to another
///< peer. Uses the keys that were exchanged with DTLS.
Socket::UDPConnection udp; ///< Our UDP socket over which WebRTC data is received and sent.
Socket::UDPConnection mainSocket; //< Main socket created during the initial handshake
std::map<int, WebRTCSocket> sockets; ///< UDP sockets over which WebRTC data is received and sent.
std::set<int> rtpSockets; ///< UDP sockets over which (S)RTP data is transmitted/received
std::set<int> sctpSockets; ///< UDP sockets over which (S)RTP data is transmitted/received
uint16_t lastMediaSocket; //< Last socket number we received video/audio on
uint16_t lastMetaSocket; //< Last socket number we received non-media data on
uint16_t udpPort; ///< Port where we receive RTP, STUN, DTLS, etc.
StunReader stunReader; ///< Decodes STUN messages; during a session we keep receiving STUN
///< messages to which we need to reply.
std::map<uint64_t, WebRTCTrack> webrtcTracks; ///< WebRTCTracks indexed by payload type for incoming data and indexed by
///< myMeta.tracks[].trackID for outgoing data.
tthread::thread *webRTCInputOutputThread; ///< The thread in which we read WebRTC data when
///< we're receive media from another peer.
uint16_t udpPort; ///< The port on which our webrtc socket is bound. This is where we receive
///< RTP, STUN, DTLS, etc. */
uint32_t SSRC; ///< The SSRC for this local instance. Is used when generating RTCP reports. */
uint64_t rtcpTimeoutInMillis; ///< When current time in millis exceeds this timeout we have to
///< send a new RTCP packet.
@ -161,18 +174,15 @@ namespace Mist{
///< the signaling channel. Defaults to 6mbit.
uint32_t videoConstraint;
size_t audTrack, vidTrack, prevVidTrack;
size_t audTrack, vidTrack, prevVidTrack, metaTrack;
double target_rate; ///< Target playback speed rate (1.0 = normal, 0 = auto)
bool didReceiveKeyFrame; /* TODO burst delay */
bool didReceiveKeyFrame;
bool setPacketOffset;
int64_t packetOffset; ///< For timestamp rewrite with BMO
uint64_t lastTimeSync;
bool firstKey;
bool repeatInit;
bool stayLive;
bool doDTLS;
bool volkswagenMode;
double stats_jitter;
uint64_t stats_nacknum;
@ -191,13 +201,17 @@ namespace Mist{
std::map<uint8_t, uint64_t> payloadTypeToWebRTCTrack; ///< Maps e.g. RED to the corresponding track. Used when input
///< supports RED/ULPFEC; can also be used to map RTX in the
///< future.
std::map<uint32_t, nackBuffer> outBuffers;
uint64_t lastSR;
std::set<size_t> mustSendSR;
int64_t ntpClockDifference;
bool syncedNTPClock;
bool sctpInited;
bool sctpConnected;
struct socket * sctp_sock;
std::map<std::string, uint16_t> dataChannels;
std::deque<std::string> queuedJSON;
};
}// namespace Mist

View file

@ -14,6 +14,10 @@ SRTPReader::SRTPReader(){
memset((void *)&policy, 0x00, sizeof(policy));
}
SRTPReader::~SRTPReader(){
if (shutdown() != 0){FAIL_MSG("Failed to cleanly shutdown the srtp reader.");}
}
/*
Before initializing the srtp library we shut it down first
because initializing the library twice results in an error.
@ -203,6 +207,11 @@ SRTPWriter::SRTPWriter(){
memset((void *)&policy, 0x00, sizeof(policy));
}
SRTPWriter::~SRTPWriter(){
if (shutdown() != 0){FAIL_MSG("Failed to cleanly shutdown the srtp writer.");}
}
/*
Before initializing the srtp library we shut it down first
because initializing the library twice results in an error.

View file

@ -14,6 +14,7 @@
class SRTPReader{
public:
SRTPReader();
~SRTPReader();
int init(const std::string &cipher, const std::string &key, const std::string &salt);
int shutdown();
int unprotectRtp(uint8_t *data, int *nbytes); /* `nbytes` should contain the number of bytes in `data`. On success `nbytes`
@ -32,6 +33,7 @@ private:
class SRTPWriter{
public:
SRTPWriter();
~SRTPWriter();
int init(const std::string &cipher, const std::string &key, const std::string &salt);
int shutdown();
int protectRtp(uint8_t *data, int *nbytes);

View file

@ -67,23 +67,23 @@ void userOnActive(Comms::Connections &connections, size_t idx){
}
// Sanity checks
if (connections.getDown(idx) < connDown[idx]){
WARN_MSG("Connection downloaded bytes should be a counter, but has decreased in value");
MEDIUM_MSG("Connection downloaded bytes should be a counter, but has decreased in value");
connDown[idx] = connections.getDown(idx);
}
if (connections.getUp(idx) < connUp[idx]){
WARN_MSG("Connection uploaded bytes should be a counter, but has decreased in value");
MEDIUM_MSG("Connection uploaded bytes should be a counter, but has decreased in value");
connUp[idx] = connections.getUp(idx);
}
if (connections.getPacketCount(idx) < connPktcount[idx]){
WARN_MSG("Connection packet count should be a counter, but has decreased in value");
MEDIUM_MSG("Connection packet count should be a counter, but has decreased in value");
connPktcount[idx] = connections.getPacketCount(idx);
}
if (connections.getPacketLostCount(idx) < connPktloss[idx]){
WARN_MSG("Connection packet loss count should be a counter, but has decreased in value");
MEDIUM_MSG("Connection packet loss count should be a counter, but has decreased in value");
connPktloss[idx] = connections.getPacketLostCount(idx);
}
if (connections.getPacketRetransmitCount(idx) < connPktretrans[idx]){
WARN_MSG("Connection packets retransmitted should be a counter, but has decreased in value");
MEDIUM_MSG("Connection packets retransmitted should be a counter, but has decreased in value");
connPktretrans[idx] = connections.getPacketRetransmitCount(idx);
}
// Add increase in stats to global stats

5
subprojects/usrsctp.wrap Normal file
View file

@ -0,0 +1,5 @@
[wrap-git]
url = https://github.com/sctplab/usrsctp.git
revision = 0.9.5.0
depth = 1