Final edits to bring all analysers and converters into autotools build system. Done!

This commit is contained in:
Thulinma 2012-05-08 22:43:37 +02:00
parent fb1a39dbd7
commit 87c567e37c
15 changed files with 38 additions and 867 deletions

2
.gitignore vendored
View file

@ -9,6 +9,8 @@ docs
nbproject
autom4te.cache
src/Mist*
src/analysers/Mist*
src/converters/Mist*
configure
config.log
config.status

View file

@ -35,5 +35,7 @@ AC_CHECK_FUNCS([dup2 gettimeofday memset mkdir socket strerror])
AC_CONFIG_FILES([Makefile
lib/Makefile
src/converters/Makefile
src/analysers/Makefile
src/Makefile])
AC_OUTPUT

View file

@ -1,4 +1,5 @@
outdir=../bin
SUBDIRS=converters analysers
outdir=..
out_PROGRAMS=MistBuffer MistController MistConnRAW MistConnRTMP MistConnHTTP
AM_LDFLAGS=-L../lib
MistBuffer_SOURCES=buffer.cpp buffer_stats.cpp buffer_user.cpp buffer_stream.cpp

12
src/analysers/Makefile.am Normal file
View file

@ -0,0 +1,12 @@
outdir=../..
out_PROGRAMS=MistAnalyserRTMP MistAnalyserFLV MistAnalyserDTSC MistAnalyserAMF
AM_LDFLAGS=-L../../lib
MistAnalyserRTMP_SOURCES=rtmp_analyser.cpp
MistAnalyserRTMP_LDADD=-lrtmpchunks -lamf -lflv_tag -ldtsc -lsocket -lssl -lcrypto
MistAnalyserFLV_SOURCES=flv_analyser.cpp
MistAnalyserFLV_LDADD=-lflv_tag -lamf -ldtsc -lsocket
MistAnalyserDTSC_SOURCES=dtsc_analyser.cpp
MistAnalyserDTSC_LDADD=-ldtsc
MistAnalyserAMF_SOURCES=amf_analyser.cpp
MistAnalyserAMF_LDADD=-lamf

View file

@ -1,244 +0,0 @@
/// \file ABST_Parser/main.cpp
/// Debugging tool for ABST boxes.
/// Expects ABST data through stdin, outputs human-readable information to stderr.
/// \todo Erik, update, delete or properly document this file.
#include <stdint.h>
#include <iostream>
#include <string>
#include "../../util/MP4/box_includes.h"
void Parse( Box * source ,std::string PrintOffset ) {
if( source->header.BoxType == 0x61627374 ) {
uint8_t Version = source->Payload[0];
uint32_t Flags = (source->Payload[1] << 16) + (source->Payload[2] << 8) + (source->Payload[3]); //uint24_t
uint32_t BootstrapInfoVersion = (source->Payload[4] << 24) + (source->Payload[5] << 16) +(source->Payload[6] << 8) + (source->Payload[7]);
uint8_t Profile = (source->Payload[8] >> 6); //uint2_t
uint8_t Live = ((source->Payload[8] >> 5 ) & 0x1); //uint1_t
uint8_t Update = ((source->Payload[8] >> 4 ) & 0x1); //uint1_t
uint8_t Reserved = (source->Payload[8] & 0x4); //uint4_t
uint32_t Timescale = (source->Payload[9] << 24) + (source->Payload[10] << 16) +(source->Payload[11] << 8) + (source->Payload[12]);
uint32_t CurrentMediaTime_Upperhalf = (source->Payload[13] << 24) + (source->Payload[14] << 16) +(source->Payload[15] << 8) + (source->Payload[16]);
uint32_t CurrentMediaTime_Lowerhalf = (source->Payload[17] << 24) + (source->Payload[18] << 16) +(source->Payload[19] << 8) + (source->Payload[20]);
uint32_t SmpteTimeCodeOffset_Upperhalf = (source->Payload[21] << 24) + (source->Payload[22] << 16) +(source->Payload[23] << 8) + (source->Payload[24]);
uint32_t SmpteTimeCodeOffset_Lowerhalf = (source->Payload[25] << 24) + (source->Payload[26] << 16) +(source->Payload[27] << 8) + (source->Payload[28]);
std::string MovieIdentifier;
uint8_t ServerEntryCount = -1;
std::vector<std::string> ServerEntryTable;
uint8_t QualityEntryCount = -1;
std::vector<std::string> QualityEntryTable;
std::string DrmData;
std::string MetaData;
uint8_t SegmentRunTableCount = -1;
std::vector<Box*> SegmentRunTableEntries;
uint8_t FragmentRunTableCount = -1;
std::vector<Box*> FragmentRunTableEntries;
uint32_t CurrentOffset = 29;
uint32_t TempSize;
Box* TempBox;
std::string temp;
while( source->Payload[CurrentOffset] != '\0' ) { MovieIdentifier += source->Payload[CurrentOffset]; CurrentOffset ++; }
CurrentOffset ++;
ServerEntryCount = source->Payload[CurrentOffset];
CurrentOffset ++;
for( uint8_t i = 0; i < ServerEntryCount; i++ ) {
temp = "";
while( source->Payload[CurrentOffset] != '\0' ) { temp += source->Payload[CurrentOffset]; CurrentOffset ++; }
ServerEntryTable.push_back(temp);
CurrentOffset++;
}
QualityEntryCount = source->Payload[CurrentOffset];
CurrentOffset ++;
for( uint8_t i = 0; i < QualityEntryCount; i++ ) {
temp = "";
while( source->Payload[CurrentOffset] != '\0' ) { temp += source->Payload[CurrentOffset]; CurrentOffset ++; }
QualityEntryTable.push_back(temp);
CurrentOffset++;
}
while( source->Payload[CurrentOffset] != '\0' ) { DrmData += source->Payload[CurrentOffset]; CurrentOffset ++; }
CurrentOffset ++;
while( source->Payload[CurrentOffset] != '\0' ) { MetaData += source->Payload[CurrentOffset]; CurrentOffset ++; }
CurrentOffset ++;
SegmentRunTableCount = source->Payload[CurrentOffset];
CurrentOffset ++;
for( uint8_t i = 0; i < SegmentRunTableCount; i++ ) {
TempSize = (source->Payload[CurrentOffset] << 24) + (source->Payload[CurrentOffset+1]<< 16) + (source->Payload[CurrentOffset+2]<< 8) + (source->Payload[CurrentOffset+3]);
TempBox = new Box( &source->Payload[CurrentOffset], TempSize );
SegmentRunTableEntries.push_back(TempBox);
CurrentOffset += TempSize;
}
FragmentRunTableCount = source->Payload[CurrentOffset];
CurrentOffset ++;
for( uint8_t i = 0; i < FragmentRunTableCount; i++ ) {
TempSize = (source->Payload[CurrentOffset] << 24) + (source->Payload[CurrentOffset+1]<< 16) + (source->Payload[CurrentOffset+2]<< 8) + (source->Payload[CurrentOffset+3]);
TempBox = new Box( &source->Payload[CurrentOffset], TempSize );
FragmentRunTableEntries.push_back(TempBox);
CurrentOffset += TempSize;
}
std::cerr << "Box_ABST:\n";
std::cerr << PrintOffset << " Version: " << (int)Version << "\n";
std::cerr << PrintOffset << " Flags: " << (int)Flags << "\n";
std::cerr << PrintOffset << " BootstrapInfoVersion: " << (int)BootstrapInfoVersion << "\n";
std::cerr << PrintOffset << " Profile: " << (int)Profile << "\n";
std::cerr << PrintOffset << " Live: " << (int)Live << "\n";
std::cerr << PrintOffset << " Update: " << (int)Update << "\n";
std::cerr << PrintOffset << " Reserved: " << (int)Reserved << "\n";
std::cerr << PrintOffset << " Timescale: " << (int)Timescale << "\n";
std::cerr << PrintOffset << " CurrentMediaTime: " << (int)CurrentMediaTime_Upperhalf << " " << CurrentMediaTime_Lowerhalf << "\n";
std::cerr << PrintOffset << " SmpteTimeCodeOffset: " << (int)SmpteTimeCodeOffset_Upperhalf << " " << SmpteTimeCodeOffset_Lowerhalf << "\n";
std::cerr << PrintOffset << " MovieIdentifier: " << MovieIdentifier << "\n";
std::cerr << PrintOffset << " ServerEntryCount: " << (int)ServerEntryCount << "\n";
std::cerr << PrintOffset << " ServerEntryTable:\n";
for( uint32_t i = 0; i < ServerEntryTable.size( ); i++ ) {
std::cerr << PrintOffset << " " << i+1 << ": " << ServerEntryTable[i] << "\n";
}
std::cerr << PrintOffset << " QualityEntryCount: " << (int)QualityEntryCount << "\n";
std::cerr << PrintOffset << " QualityEntryTable:\n";
for( uint32_t i = 0; i < QualityEntryTable.size( ); i++ ) {
std::cerr << PrintOffset << " " << i+1 << ": " << QualityEntryTable[i] << "\n";
}
std::cerr << PrintOffset << " DrmData: " << DrmData << "\n";
std::cerr << PrintOffset << " MetaData: " << MetaData << "\n";
std::cerr << PrintOffset << " SegmentRunTableCount: " << (int)SegmentRunTableCount << "\n";
std::cerr << PrintOffset << " SegmentRunTableEntries:\n";
for( uint32_t i = 0; i < SegmentRunTableEntries.size( ); i++ ) {
std::cerr << PrintOffset << " " << i+1 << ": ";
Parse( SegmentRunTableEntries[i], PrintOffset+" " );
}
std::cerr << PrintOffset << " FragmentRunTableCount: " << (int)FragmentRunTableCount << "\n";
std::cerr << PrintOffset << " FragmentRunTableEntries:\n";
for( uint32_t i = 0; i < FragmentRunTableEntries.size( ); i++ ) {
std::cerr << PrintOffset << " " << i+1 << ": ";
Parse( FragmentRunTableEntries[i], PrintOffset+" " );
}
} else if ( source->header.BoxType == 0x61737274 ) {
uint8_t Version = source->Payload[0];
uint32_t Flags = (source->Payload[1] << 16) + (source->Payload[2] << 8) + (source->Payload[3]); //uint24_t
uint8_t QualityEntryCount;
std::vector<std::string> QualitySegmentUrlModifiers;
uint32_t SegmentRunEntryCount;
std::vector< std::pair<uint32_t,uint32_t> > SegmentRunEntryTable;
uint32_t CurrentOffset = 4;
std::string temp;
std::pair<uint32_t,uint32_t> TempPair;
QualityEntryCount = source->Payload[CurrentOffset];
CurrentOffset ++;
for( uint8_t i = 0; i < QualityEntryCount; i++ ) {
temp = "";
while( source->Payload[CurrentOffset] != '\0' ) { temp += source->Payload[CurrentOffset]; CurrentOffset ++; }
QualitySegmentUrlModifiers.push_back(temp);
CurrentOffset++;
}
SegmentRunEntryCount = (source->Payload[CurrentOffset] << 24) + (source->Payload[CurrentOffset+1] << 16) + (source->Payload[CurrentOffset+2] << 8) + (source->Payload[CurrentOffset+3]);
CurrentOffset +=4;
for( uint8_t i = 0; i < SegmentRunEntryCount; i++ ) {
TempPair.first = (source->Payload[CurrentOffset] << 24) + (source->Payload[CurrentOffset+1] << 16) + (source->Payload[CurrentOffset+2] << 8) + (source->Payload[CurrentOffset+3]);
CurrentOffset+=4;
TempPair.second = (source->Payload[CurrentOffset] << 24) + (source->Payload[CurrentOffset+1] << 16) + (source->Payload[CurrentOffset+2] << 8) + (source->Payload[CurrentOffset+3]);
CurrentOffset+=4;
SegmentRunEntryTable.push_back(TempPair);
}
std::cerr << "Box_ASRT:\n";
std::cerr << PrintOffset << " Version: " << (int)Version << "\n";
std::cerr << PrintOffset << " Flags: " << (int)Flags << "\n";
std::cerr << PrintOffset << " QualityEntryCount: " << (int)QualityEntryCount << "\n";
std::cerr << PrintOffset << " QualitySegmentUrlModifiers:\n";
for( uint32_t i = 0; i < QualitySegmentUrlModifiers.size( ); i++ ) {
std::cerr << PrintOffset << " " << i+1 << ": " << QualitySegmentUrlModifiers[i] << "\n";
}
std::cerr << PrintOffset << " SegmentRunEntryCount: " << (int)SegmentRunEntryCount << "\n";
std::cerr << PrintOffset << " SegmentRunEntryTable:\n";
for( uint32_t i = 0; i < SegmentRunEntryTable.size( ); i++ ) {
std::cerr << PrintOffset << " " << i+1 << ":\n";
std::cerr << PrintOffset << " FirstSegment: " << SegmentRunEntryTable[i].first << "\n";
std::cerr << PrintOffset << " FragmentsPerSegment: " << SegmentRunEntryTable[i].second << "\n";
}
} else if ( source->header.BoxType == 0x61667274 ) {
uint8_t Version = source->Payload[0];
uint32_t Flags = (source->Payload[1] << 16) + (source->Payload[2] << 8) + (source->Payload[3]); //uint24_t
uint32_t TimeScale = (source->Payload[4] << 24) + (source->Payload[5] << 16) + (source->Payload[6] << 8) + (source->Payload[7]);
uint8_t QualityEntryCount;
std::vector<std::string> QualitySegmentUrlModifiers;
uint32_t FragmentRunEntryCount;
std::vector<afrt_fragmentrunentry> FragmentRunEntryTable;
uint32_t CurrentOffset = 8;
std::string temp;
afrt_fragmentrunentry TempEntry;
QualityEntryCount = source->Payload[CurrentOffset];
CurrentOffset ++;
for( uint8_t i = 0; i < QualityEntryCount; i++ ) {
temp = "";
while( source->Payload[CurrentOffset] != '\0' ) { temp += source->Payload[CurrentOffset]; CurrentOffset ++; }
QualitySegmentUrlModifiers.push_back(temp);
CurrentOffset++;
}
FragmentRunEntryCount = (source->Payload[CurrentOffset] << 24) + (source->Payload[CurrentOffset+1] << 16) + (source->Payload[CurrentOffset+2] << 8) + (source->Payload[CurrentOffset+3]);
CurrentOffset +=4;
for( uint8_t i = 0; i < FragmentRunEntryCount; i ++ ) {
TempEntry.FirstFragment = (source->Payload[CurrentOffset] << 24) + (source->Payload[CurrentOffset+1] << 16) + (source->Payload[CurrentOffset+2] << 8) + (source->Payload[CurrentOffset+3]);
CurrentOffset +=4;
CurrentOffset +=4;
TempEntry.FirstFragmentTimestamp = (source->Payload[CurrentOffset] << 24) + (source->Payload[CurrentOffset+1] << 16) + (source->Payload[CurrentOffset+2] << 8) + (source->Payload[CurrentOffset+3]);
CurrentOffset +=4;
TempEntry.FragmentDuration = (source->Payload[CurrentOffset] << 24) + (source->Payload[CurrentOffset+1] << 16) + (source->Payload[CurrentOffset+2] << 8) + (source->Payload[CurrentOffset+3]);
CurrentOffset +=4;
if( TempEntry.FragmentDuration == 0 ) {
TempEntry.DiscontinuityIndicator = source->Payload[CurrentOffset];
CurrentOffset++;
}
FragmentRunEntryTable.push_back(TempEntry);
}
std::cerr << "Box_AFRT:\n";
std::cerr << PrintOffset << " Version: " << (int)Version << "\n";
std::cerr << PrintOffset << " Flags: " << (int)Flags << "\n";
std::cerr << PrintOffset << " Timescale: " << (int)TimeScale << "\n";
std::cerr << PrintOffset << " QualityEntryCount: " << (int)QualityEntryCount << "\n";
std::cerr << PrintOffset << " QualitySegmentUrlModifiers:\n";
for( uint32_t i = 0; i < QualitySegmentUrlModifiers.size( ); i++ ) {
std::cerr << PrintOffset << " " << i+1 << ": " << QualitySegmentUrlModifiers[i] << "\n";
}
std::cerr << PrintOffset << " FragmentRunEntryCount: " << (int)FragmentRunEntryCount << "\n";
std::cerr << PrintOffset << " FragmentRunEntryTable:\n";
for( uint32_t i = 0; i < FragmentRunEntryTable.size( ); i++ ) {
std::cerr << PrintOffset << " " << i+1 << ":\n";
std::cerr << PrintOffset << " FirstFragment: " << FragmentRunEntryTable[i].FirstFragment << "\n";
std::cerr << PrintOffset << " FirstFragmentTimestamp: " << FragmentRunEntryTable[i].FirstFragmentTimestamp << "\n";
std::cerr << PrintOffset << " FragmentDuration: " << FragmentRunEntryTable[i].FragmentDuration << "\n";
if( FragmentRunEntryTable[i].FragmentDuration == 0 ) {
std::cerr << PrintOffset << " DiscontinuityIndicator: " << (int)FragmentRunEntryTable[i].DiscontinuityIndicator << "\n";
}
}
} else {
std::cerr << "BoxType '"
<< (char)(source->header.BoxType >> 24)
<< (char)((source->header.BoxType << 8) >> 24)
<< (char)((source->header.BoxType << 16) >> 24)
<< (char)((source->header.BoxType << 24) >> 24)
<< "' not yet implemented!\n";
}
}
int main( ) {
std::string temp;
bool validinp = true;
char thischar;
while(validinp) {
thischar = std::cin.get( );
if(std::cin.good( ) ) {
temp += thischar;
} else {
validinp = false;
}
}
Box * TestBox = new Box((uint8_t*)temp.c_str( ), temp.size( ));
Parse( TestBox, "" );
delete TestBox;
}

View file

@ -7,7 +7,7 @@
#include <iostream>
#include <fstream>
#include <string>
#include "../../util/amf.h"
#include "../../lib/amf.h"
/// Debugging tool for AMF data.
/// Expects AMF data through stdin, outputs human-readable information to stderr.

View file

@ -10,7 +10,7 @@
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include "../../util/dtsc.h" //DTSC support
#include "../../lib/dtsc.h" //DTSC support
/// Reads DTSC from stdin and outputs human-readable information to stderr.
int main() {

View file

@ -10,7 +10,7 @@
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include "../../util/flv_tag.h" //FLV support
#include "../../lib/flv_tag.h" //FLV support
/// Reads DTSC from stdin and outputs human-readable information to stderr.
int main() {

View file

@ -1,45 +0,0 @@
/// \file HTTP_Box_Parser/main.cpp
/// Debugging tool for F4M HTTP streaming data.
/// Expects raw TCP data through stdin, outputs human-readable information to stderr.
/// This will attempt to read either HTTP requests or responses from stdin, and if the body is more than
/// 10,000 bytes long will attempt to parse the data as a MP4 box. (Other cases show a message about the fragment being too small)
/// Then it will take the payload of this box, print the first four bytes, and attempt to parse the whole payload as FLV data.
/// The parsed FLV data is then pretty-printed, containing information about the codec parameters and types of tags it encounters.
#include <stdint.h>
#include <iostream>
#include <string>
#include <stdio.h>
#include "../../util/http_parser.h"
#include "../../util/MP4/box_includes.h"
#include "../../util/flv_tag.h"
/// Debugging tool for F4M HTTP streaming data.
/// Expects raw TCP data through stdin, outputs human-readable information to stderr.
/// This will attempt to read either HTTP requests or responses from stdin, and if the body is more than
/// 10,000 bytes long will attempt to parse the data as a MP4 box. (Other cases show a message about the fragment being too small)
/// Then it will take the payload of this box, print the first four bytes, and attempt to parse the whole payload as FLV data.
/// The parsed FLV data is then pretty-printed, containing information about the codec parameters and types of tags it encounters.
int main(){
HTTP::Parser H;
FLV::Tag F;
unsigned int P = 0;
char * Payload = 0;
while (H.Read(stdin) || H.CleanForNext()){
if (H.body.size() > 10000){
Box * TestBox = new Box((uint8_t*)H.body.c_str(), H.body.size());
Payload = (char*)TestBox->GetPayload();
printf("First bytes: %2hhu %2hhu %2hhu %2hhu\n", Payload[0], Payload[1], Payload[2], Payload[3]);
P = 0;
while (TestBox->GetPayloadSize() > P){
if (F.MemLoader(Payload, TestBox->GetPayloadSize(), P)){
std::cout << "Got a " << F.len << " bytes " << F.tagType() << " FLV tag of time " << F.tagTime() << "." << std::endl;
}
}
delete TestBox;
}else{
std::cout << "Skipped too small fragment of size " << H.body.size() << std::endl;
}
}
}//main

View file

@ -15,9 +15,9 @@
#include <fstream>
#include <string>
#include <iostream>
#include "../../util/flv_tag.h"
#include "../../util/amf.h"
#include "../../util/rtmpchunks.h"
#include "../../lib/flv_tag.h"
#include "../../lib/amf.h"
#include "../../lib/rtmpchunks.h"
int Detail = 0;
#define DETAIL_RECONSTRUCT 1
@ -153,7 +153,7 @@ int main(int argc, char ** argv){
std::cerr << amfdata.Print() << std::endl;
}else{
amf3data = AMF::parse3(next.data);
std::cerr << amf3data.Print() << std::endl;
amf3data.Print();
}
} break;
case 18:{

View file

@ -1,63 +0,0 @@
#include <iostream>
#include <cstdio>
///A struct that will contain all data stored in a RTP Header
struct RTP_Header {
char Version;
bool Padding;
bool Extension;
char CSRC_Count;
bool Marker;
char Payload_Type;
int Sequence_Number;
int Timestamp;
int SSRC;
};//RTP_Header
///Fills a RTP Header
///\param hdr A RTP Header structure
///\param Header A characterpointer to an RTP packet
///\param HeaderSize the expected length of the header
void Read_Header( RTP_Header & hdr, char * Header, int HeaderSize ) {
hdr.Version = ( Header[0] & 0xC0 ) >> 6;
hdr.Padding = ( Header[0] & 0x20 ) >> 5;
hdr.Extension = ( Header[0] & 0x10 ) >> 4;
hdr.CSRC_Count = ( Header[0] & 0x0F );
hdr.Marker = ( Header[1] & 0x80 ) >> 7;
hdr.Payload_Type = ( Header[1] & 0x7F );
hdr.Sequence_Number = ( ( ( Header[2] ) << 8 ) + ( Header[3] ) ) & 0x0000FFFF;
hdr.Timestamp = ( ( Header[4] ) << 24 ) + ( ( Header[5] ) << 16 ) + ( ( Header[6] ) << 8 ) + ( Header[7] );
hdr.SSRC = ( ( Header[8] ) << 24 ) + ( ( Header[9] ) << 16 ) + ( ( Header[10] ) << 8 ) + ( Header[11] );
}
///Prints a RTP header
///\param hdr The RTP Header
void Print_Header( RTP_Header hdr ) {
printf( "RTP Header:\n" );
printf( "\tVersion:\t\t%d\n", hdr.Version );
printf( "\tPadding:\t\t%d\n", hdr.Padding );
printf( "\tExtension:\t\t%d\n", hdr.Extension );
printf( "\tCSRC Count:\t\t%d\n", hdr.CSRC_Count );
printf( "\tMarker:\t\t\t%d\n", hdr.Marker );
printf( "\tPayload Type:\t\t%d\n", hdr.Payload_Type );
printf( "\tSequence Number:\t%d\n", hdr.Sequence_Number );
printf( "\tTimestamp:\t\t%u\n", hdr.Timestamp );
printf( "\tSSRC:\t\t\t%u\n", hdr.SSRC );
}
int main( ) {
int HeaderSize = 12;
char Header[ HeaderSize ];
for( int i = 0; i < HeaderSize; i++ ) {
if( !std::cin.good() ) { break; }
Header[ i ] = std::cin.get();
}
RTP_Header hdr;
Read_Header( hdr, Header, HeaderSize );
Print_Header( hdr );
return 0;
}

View file

@ -1,501 +0,0 @@
/// \file TS_Analyser/main.cpp
/// Contains the code for the TS Analyser
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <vector>
#include <fstream>
/// Contains all data unique to a single entry in the PAT
struct program_association_table_entry {
unsigned int Program_Number;///< Number of the program adressed
unsigned char Reserved;
unsigned int Program_Map_PID;///< PID of the map associated with this program
};
/// The program association table ( PAT )
struct program_association_table {
unsigned char Pointer_Field;///< A single padding character
unsigned char Table_ID;///< ID of this table
bool Section_Syntax_Indicator;///< Indicates whether the payload confirms to specification, or is private
bool Zero;
unsigned char Reserved_1;
unsigned int Section_Length;///< Length of this section of the PAT
unsigned int Transport_Stream_ID;///< ID of the stream
unsigned char Reserved_2;
unsigned char Version_Number;///< Version of this section
bool Current_Next_Indicator;///< Currently applicable
unsigned char Section_Number;///< Number of this section
unsigned char Last_Section_Number;///< Amount of sections in the complete table
std::vector<program_association_table_entry> Entries;
unsigned int CRC_32;
};
/// An entry of the PMT
struct program_mapping_table_entry {
unsigned char Stream_Type;///< Type of stream we encounter
unsigned char Reserved_1;
unsigned int Elementary_PID;///< PID of the packages carying the elementary stream for this entry
unsigned char Reserved_2;
unsigned int ES_Info_Length;///< Length of extra info. Not needed for understanding the file
};
/// The program mapping table ( PMT )
struct program_mapping_table {
unsigned char Pointer_Field;///< A single padding character
unsigned char Table_ID;///< ID of this table
bool Section_Syntax_Indicator;///< Indicates whether the payload confirms to specification, or is private
bool Zero;
unsigned char Reserved_1;
unsigned int Section_Length;///< Length of this section
unsigned int Program_Number;///< Program number in stream
unsigned char Reserved_2;
unsigned char Version_Number;///< Version of this section
bool Current_Next_Indicator;///< Currently applicable
unsigned char Section_Number;///< Number of this section
unsigned char Last_Section_Number;///< Amount of sections in PMT
unsigned char Reserved_3;
unsigned int PCR_PID;///< PID of the packets that contain Program Counter References
unsigned char Reserved_4;
unsigned int Program_Info_Length;///< Length of the program descriptors. Skip for analysis
//vector Descriptors
std::vector<program_mapping_table_entry> Entries;
unsigned int CRC_32;
};
/// The adaptation field
struct adaptation_field {
unsigned char Adaptation_Field_Length;///Lenght of the complete field, greater or equal to 0
bool Discontinuity_Indicator;
bool Random_Access_Indicator;
bool Elementary_Stream_Priority_Indicator;
bool PCR_Flag;///< PCR Field existent
bool OPCR_Flag;///< OPCR Field existent
bool Splicing_Point_Flag;
bool Transport_Private_Data_Flag;
bool Adaptation_Field_Extension_Flag;
unsigned char Program_Clock_Reference_Base_MSB;///< Most significant bit for the Base value of the PCR
unsigned int Program_Clock_Reference_Base;///< Least significant 32 bits for the Base value of the PCR
unsigned char PCR_Reserved;
unsigned int Program_Clock_Reference_Extension;///< Extension of the PCR
unsigned char Original_Program_Clock_Reference_Base_MSB;///< Most significant bit for the Base value of the OPCR
unsigned int Original_Program_Clock_Reference_Base;///< Least significant 32 bits for the Base value of the OPCR
unsigned char OPCR_Reserved;
unsigned int Original_Program_Clock_Reference_Extension;///< Extension of the OPCR
};
/// The general structure of a PES packet
struct pes_packet {
unsigned int Packet_Start_Code_Prefix;///< Prefix, should be 0x000001
unsigned char Stream_ID;///< ID of the current stream
unsigned int PES_Packet_Length;///< Length of the PES packet
unsigned char Two;
unsigned char PES_Scrambling_Control;
bool PES_Priority;
bool Data_Alignment_Indicator;
bool Copyright;
bool Original_Or_Copy;
unsigned char PTS_DTS_Flags;///Presentation Time Stamp and/or Display Time Stamp available
bool ESCR_Flag;
bool ES_Rate_Flag;
bool DSM_Trick_Mode_Flag;
bool Additional_Copy_Info_Flag;
bool PES_CRC_Flag;
bool PES_Extension_Flag;
unsigned char PES_Header_Data_Length;///< Length of the header
unsigned char PTS_Spacer;///< Spacer, value depends on the flag
unsigned char PTS_MSB;///< Most significant bit of the PTS
unsigned int PTS;///< Least significant 32 bits of the PTS
unsigned char DTS_Spacer;///< Spacer, value depends on the flag
unsigned char DTS_MSB;///< Most significant bit of the DTS
unsigned int DTS;///< Least significant 32 bits of the DTS
std::vector<unsigned char> Header_Stuffing;///< Header stuffing, if present
std::vector<unsigned char> First_Bytes;///< Storage capacity for the first few bytes
};
/// Fills a PES Packet
/// \param PES The packet in which the data should be stored
/// \param TempChar The current TS packet data
/// \param Offset Offset of the PES data, changed if adaptation field exists
void fill_pes( pes_packet & PES, unsigned char * TempChar, int Offset = 4 ) {
PES.Packet_Start_Code_Prefix = ( TempChar[Offset] << 16 ) + ( TempChar[Offset+1] << 8 ) + TempChar[Offset+2];
PES.Stream_ID = TempChar[Offset+3];
PES.PES_Packet_Length = ( TempChar[Offset+4] << 8 ) + TempChar[Offset+5];
Offset += 6;
if( true ) { //Always for streams yet encountered
PES.Two = ( TempChar[Offset] & 0xC0 ) >> 6;
PES.PES_Scrambling_Control = ( TempChar[Offset] & 0x30 ) >> 4;
PES.PES_Priority = ( TempChar[Offset] & 0x08 ) >> 3;
PES.Data_Alignment_Indicator = ( TempChar[Offset] & 0x04 ) >> 2;
PES.Copyright = ( TempChar[Offset] & 0x02 ) >> 1;
PES.Original_Or_Copy = ( TempChar[Offset] & 0x01 );
Offset ++;
PES.PTS_DTS_Flags = ( TempChar[Offset] & 0xC0 ) >> 6;
PES.ESCR_Flag = ( TempChar[Offset] & 0x20 ) >> 5;
PES.ES_Rate_Flag = ( TempChar[Offset] & 0x10 ) >> 4;
PES.DSM_Trick_Mode_Flag = ( TempChar[Offset] & 0x08 ) >> 3;
PES.Additional_Copy_Info_Flag = ( TempChar[Offset] & 0x04 ) >> 2;
PES.PES_CRC_Flag = ( TempChar[Offset] & 0x02 ) >> 1;
PES.PES_Extension_Flag = ( TempChar[Offset] & 0x01 );
Offset ++;
PES.PES_Header_Data_Length = TempChar[Offset];
Offset ++;
int HeaderStart = Offset;
if( PES.PTS_DTS_Flags >= 2 ) {
PES.PTS_Spacer = ( TempChar[Offset] & 0xF0 ) >> 4;
PES.PTS_MSB = ( TempChar[Offset] & 0x08 ) >> 3;
PES.PTS = ( ( TempChar[Offset] & 0x06 ) << 29 );
PES.PTS += ( TempChar[Offset+1] ) << 22;
PES.PTS += ( ( TempChar[Offset+2] ) & 0xFE ) << 14;
PES.PTS += ( TempChar[Offset+3] ) << 7;
PES.PTS += ( ( TempChar[Offset+4] & 0xFE ) >> 1 );
Offset += 5;
}
if( PES.PTS_DTS_Flags == 3 ) {
PES.DTS_Spacer = ( TempChar[Offset] & 0xF0 ) >> 4;
PES.DTS_MSB = ( TempChar[Offset] & 0x08 ) >> 3;
PES.DTS = ( ( TempChar[Offset] & 0x06 ) << 29 );
PES.DTS += ( TempChar[Offset+1] ) << 22;
PES.DTS += ( ( TempChar[Offset+2] ) & 0xFE ) << 14;
PES.DTS += ( TempChar[Offset+3] ) << 7;
PES.DTS += ( ( TempChar[Offset+4] & 0xFE ) >> 1 );
Offset += 5;
}
PES.Header_Stuffing.clear();
while( Offset < HeaderStart + PES.PES_Header_Data_Length ) {
PES.Header_Stuffing.push_back( TempChar[Offset] );
Offset ++;
}
PES.First_Bytes.clear();
for( int i = 0; i < 30; i ++ ) {
PES.First_Bytes.push_back( TempChar[Offset+i] );
}
}
}
/// Prints a PES packet to STDOUT
/// \param PES The packet to be print
/// \param offset A string indicating the indentation of the outputed data
void print_pes( pes_packet PES, std::string offset="\t" ) {
printf( "%sPES Header\n", offset.c_str() );
printf( "%s\tPacket Start Code Prefix\t%.6X\n", offset.c_str(), PES.Packet_Start_Code_Prefix );
printf( "%s\tStream ID\t\t\t%X\n", offset.c_str(), PES.Stream_ID );
printf( "%s\tPES Packet Length\t\t%X\n", offset.c_str(), PES.PES_Packet_Length );
if( true ) { //Always for streams yet encountered
printf( "%s\tTwo:\t\t\t\t%d\n", offset.c_str(), PES.Two );
printf( "%s\tPES Scrambling Control:\t\t%d\n", offset.c_str(), PES.PES_Scrambling_Control );
printf( "%s\tPES Priority:\t\t\t%d\n", offset.c_str(), PES.PES_Priority );
printf( "%s\tData Alignment Indicator:\t%d\n", offset.c_str(), PES.Data_Alignment_Indicator );
printf( "%s\tCopyright:\t\t\t%d\n", offset.c_str(), PES.Copyright );
printf( "%s\tOriginal Or Copy:\t\t%d\n", offset.c_str(), PES.Original_Or_Copy );
printf( "%s\tPTS DTS Flags:\t\t\t%d\n", offset.c_str(), PES.PTS_DTS_Flags );
printf( "%s\tESCR Flag:\t\t\t%d\n", offset.c_str(), PES.ESCR_Flag );
printf( "%s\tES Rate Flag:\t\t\t%d\n", offset.c_str(), PES.ES_Rate_Flag );
printf( "%s\tDSM Trick Mode Flag:\t\t%d\n", offset.c_str(), PES.DSM_Trick_Mode_Flag );
printf( "%s\tAdditional Copy Info Flag:\t%d\n", offset.c_str(), PES.Additional_Copy_Info_Flag );
printf( "%s\tPES CRC Flag:\t\t\t%d\n", offset.c_str(), PES.PES_CRC_Flag );
printf( "%s\tPES Extension Flag:\t\t%d\n", offset.c_str(), PES.PES_Extension_Flag );
printf( "%s\tPES Header Data Length:\t\t%d\n", offset.c_str(), PES.PES_Header_Data_Length );
if( PES.PTS_DTS_Flags >= 2 ) {
printf( "%s\tPTS Spacer\t\t\t%d\n", offset.c_str(), PES.PTS_Spacer );
printf( "%s\tPTS\t\t\t\t%X%.8X\n", offset.c_str(), PES.PTS_MSB, PES.PTS );
}
if( PES.PTS_DTS_Flags == 3 ) {
printf( "%s\tDTS Spacer\t\t\t%d\n", offset.c_str(), PES.DTS_Spacer );
printf( "%s\tDTS\t\t\t\t%X%.8X\n", offset.c_str(), PES.DTS_MSB, PES.DTS );
}
printf( "%s\tHeader Stuffing\t\t\t", offset.c_str() );
for( int i = 0; i < PES.Header_Stuffing.size(); i++ ) {
printf( "%.2X ", PES.Header_Stuffing[i] );
}
printf( "\n" );
printf( "%s\tFirst_Bytes\t\t\t", offset.c_str() );
for( int i = 0; i < PES.First_Bytes.size(); i++ ) {
printf( "%.2X ", PES.First_Bytes[i] );
}
printf( "\n" );
}
}
/// Fills a PAT structure with the right data
/// \param PAT the structure to be filled
/// \param TempChar The TS packet data
void fill_pat( program_association_table & PAT, unsigned char * TempChar ) {
PAT.Pointer_Field = TempChar[4];
PAT.Table_ID = TempChar[5];
PAT.Section_Syntax_Indicator = ((TempChar[6] & 0x80 ) != 0 );
PAT.Zero = (( TempChar[6] & 0x40 ) != 0 );
PAT.Reserved_1 = (( TempChar[6] & 0x30 ) >> 4 );
PAT.Section_Length = (( TempChar[6] & 0x0F ) << 8 ) + TempChar[7];
PAT.Transport_Stream_ID = (( TempChar[8] << 8 ) + TempChar[9] );
PAT.Reserved_2 = (( TempChar[10] & 0xC0 ) >> 6 );
PAT.Version_Number = (( TempChar[10] & 0x01 ) >> 1 );
PAT.Current_Next_Indicator = (( TempChar[10] & 0x01 ) != 0 );
PAT.Section_Number = TempChar[11];
PAT.Last_Section_Number = TempChar[12];
PAT.Entries.clear( );
for( int i = 0; i < PAT.Section_Length - 9; i += 4 ) {
program_association_table_entry PAT_Entry;
PAT_Entry.Program_Number = ( TempChar[13+i] << 8 ) + TempChar[14+i];
PAT_Entry.Reserved = ( TempChar[15+i] & 0xE0 ) >> 5;
PAT_Entry.Program_Map_PID = (( TempChar[15+i] & 0x1F ) << 8 ) + TempChar[16+i];
PAT.Entries.push_back( PAT_Entry );
}
PAT.CRC_32 = ( TempChar[8+PAT.Section_Length-4] << 24 ) + ( TempChar[8+PAT.Section_Length-3] << 16 ) + ( TempChar[8+PAT.Section_Length-2] << 8 ) + ( TempChar[8+PAT.Section_Length-1] );
}
/// Prints a PAT to STDOUT
/// \param PAT The table to be print
/// \param offset A string indicating the indentation of the outputed data
void print_pat( program_association_table PAT, bool Pointer_Field = false, std::string offset="\t" ) {
printf( "%sProgram Association Table\n", offset.c_str() );
if( Pointer_Field ) {
printf( "%s\tPointer Field:\t\t\t%X\n", offset.c_str(), PAT.Pointer_Field );
}
printf( "%s\tTable ID:\t\t\t%X\n", offset.c_str(), PAT.Table_ID );
printf( "%s\tSection Syntax Indicator:\t%d\n", offset.c_str(), PAT.Section_Syntax_Indicator );
printf( "%s\t0:\t\t\t\t%d\n", offset.c_str(), PAT.Zero );
printf( "%s\tReserved:\t\t\t%d\n", offset.c_str(), PAT.Reserved_1 );
printf( "%s\tSection Length:\t\t\t%X\n", offset.c_str(), PAT.Section_Length );
printf( "%s\tTransport Stream ID\t\t%X\n", offset.c_str(), PAT.Transport_Stream_ID );
printf( "%s\tReserved:\t\t\t%d\n", offset.c_str(), PAT.Reserved_2 );
printf( "%s\tVersion Number:\t\t\t%X\n", offset.c_str(), PAT.Version_Number );
printf( "%s\tCurrent Next Indicator:\t\t%d\n", offset.c_str(), PAT.Current_Next_Indicator );
printf( "%s\tSection Number:\t\t\t%X\n", offset.c_str(), PAT.Section_Number );
printf( "%s\tLast Section Number:\t\t%d\n\n", offset.c_str(), PAT.Last_Section_Number );
for( int i = 0; i < PAT.Entries.size(); i++ ) {
printf( "%s\tEntry %d\n", offset.c_str(), i );
printf( "%s\t\tProgram Number:\t\t%X\n", offset.c_str(), PAT.Entries[i].Program_Number );
printf( "%s\t\tReserved:\t\t%X\n", offset.c_str(), PAT.Entries[i].Reserved );
printf( "%s\t\tProgram Map PID:\t%X\n", offset.c_str(), PAT.Entries[i].Program_Map_PID );
}
printf( "\n%s\tCRC_32:\t\t\t\t%X\n", offset.c_str(), PAT.CRC_32 );
}
/// Fills a PMT structure with the right data
/// \param PMT the structure to be filled
/// \param TempChar The TS packet data
void fill_pmt( program_mapping_table & PMT, unsigned char * TempChar ) {
int CurrentOffset;
PMT.Pointer_Field = TempChar[4];
PMT.Table_ID = TempChar[5];
PMT.Section_Syntax_Indicator = (( TempChar[6] & 0x80 ) != 0 );
PMT.Zero = (( TempChar[6] & 0x40 ) != 0 );
PMT.Reserved_1 = (( TempChar[6] & 0x30 ) >> 4 );
PMT.Section_Length = (( TempChar[6] & 0x0F ) << 8 ) + TempChar[7];
PMT.Program_Number = (TempChar[8] << 8) + TempChar[9];
PMT.Reserved_2 = (( TempChar[10] & 0xC0 ) >> 6 );
PMT.Version_Number = (( TempChar[10] & 0x1E ) >> 1 );
PMT.Current_Next_Indicator = ( TempChar[10] & 0x01 );
PMT.Section_Number = TempChar[11];
PMT.Last_Section_Number = TempChar[12];
PMT.Reserved_3 = (( TempChar[13] & 0xE0 ) >> 5 );
PMT.PCR_PID = (( TempChar[13] & 0x1F ) << 8 ) + TempChar[14];
PMT.Reserved_4 = (( TempChar[15] & 0xF0 ) >> 4 );
PMT.Program_Info_Length = ((TempChar[15] & 0x0F ) << 8 ) + TempChar[16];
CurrentOffset = 17 + PMT.Program_Info_Length;
PMT.Entries.clear( );
while( CurrentOffset < PMT.Section_Length - 8 ) {
program_mapping_table_entry PMT_Entry;
PMT_Entry.Stream_Type = TempChar[CurrentOffset];
PMT_Entry.Reserved_1 = (( TempChar[CurrentOffset+1] & 0xE0 ) >> 5 );
PMT_Entry.Elementary_PID = (( TempChar[CurrentOffset+1] & 0x1F ) << 8 ) + TempChar[CurrentOffset+2];
PMT_Entry.Reserved_2 = (( TempChar[CurrentOffset+3] & 0xF0 ) >> 4 );
PMT_Entry.ES_Info_Length = (( TempChar[CurrentOffset+3] & 0x0F ) << 8 ) + TempChar[CurrentOffset+4];
PMT.Entries.push_back( PMT_Entry );
CurrentOffset += 4 + PMT_Entry.ES_Info_Length;
}
PMT.CRC_32 = ( TempChar[CurrentOffset] << 24 ) + ( TempChar[CurrentOffset+1] << 16 ) + ( TempChar[CurrentOffset+2] << 8 ) + ( TempChar[CurrentOffset+3] );
}
/// Prints a PMT to STDOUT
/// \param PMT The table to be print
/// \param offset A string indicating the indentation of the outputed data
void print_pmt( program_mapping_table PMT, bool Pointer_Field = false, std::string offset="\t" ) {
if( Pointer_Field ) {
printf( "%s\tPointer Field:\t\t\t%X\n", offset.c_str(), PMT.Pointer_Field );
}
printf( "%s\tTable ID:\t\t\t%X\n", offset.c_str(), PMT.Table_ID );
printf( "%s\tSection Syntax Indicator:\t%d\n", offset.c_str(), PMT.Section_Syntax_Indicator);
printf( "%s\t0:\t\t\t\t%d\n", offset.c_str(), PMT.Zero );
printf( "%s\tReserved:\t\t\t%d\n", offset.c_str(), PMT.Reserved_1 );
printf( "%s\tSection Length:\t\t\t%X\n", offset.c_str(), PMT.Section_Length );
printf( "%s\tProgram Number:\t\t\t%X\n", offset.c_str(), PMT.Program_Number );
printf( "%s\tReserved:\t\t\t%d\n", offset.c_str(), PMT.Reserved_2 );
printf( "%s\tVersion Number:\t\t\t%d\n", offset.c_str(), PMT.Version_Number );
printf( "%s\tCurrent_Next_Indicator:\t\t%d\n", offset.c_str(), PMT.Current_Next_Indicator );
printf( "%s\tSection Number:\t\t\t%d\n", offset.c_str(), PMT.Section_Number );
printf( "%s\tLast Section Number:\t\t%d\n", offset.c_str(), PMT.Last_Section_Number );
printf( "%s\tReserved:\t\t\t%d\n", offset.c_str(), PMT.Reserved_3 );
printf( "%s\tPCR PID:\t\t\t%X\n", offset.c_str(), PMT.PCR_PID );
printf( "%s\tReserved:\t\t\t%d\n", offset.c_str(), PMT.Reserved_4 );
printf( "%s\tProgram Info Length:\t\t%d\n", offset.c_str(), PMT.Program_Info_Length );
printf( "%s\tProgram Descriptors Go Here\n\n" );
for( int i = 0; i < PMT.Entries.size(); i++ ) {
printf( "%s\tEntry %d:\n", offset.c_str(), i );
printf( "%s\t\tStream Type\t\t%d\n", offset.c_str(), PMT.Entries[i].Stream_Type );
printf( "%s\t\tReserved\t\t%d\n", offset.c_str(), PMT.Entries[i].Reserved_1 );
printf( "%s\t\tElementary PID\t\t%X\n", offset.c_str(), PMT.Entries[i].Elementary_PID );
printf( "%s\t\tReserved\t\t%d\n", offset.c_str(), PMT.Entries[i].Reserved_2 );
printf( "%s\t\tES Info Length\t\t%d\n", offset.c_str(), PMT.Entries[i].ES_Info_Length );
}
printf( "%s\tCRC 32\t\t%8X\n", offset.c_str(), PMT.CRC_32 );
}
/// Fills an AF structure with the right data
/// \param AF the structure to be filled
/// \param TempChar The TS packet data
void fill_af( adaptation_field & AF, unsigned char * TempChar ) {
AF.Adaptation_Field_Length = TempChar[4];
AF.Discontinuity_Indicator = (( TempChar[5] & 0x80 ) >> 7 );
AF.Random_Access_Indicator = (( TempChar[5] & 0x40 ) >> 6 );
AF.Elementary_Stream_Priority_Indicator = (( TempChar[5] & 0x20 ) >> 5 );
AF.PCR_Flag = (( TempChar[5] & 0x10 ) >> 4 );
AF.OPCR_Flag = (( TempChar[5] & 0x08 ) >> 3 );
AF.Splicing_Point_Flag = (( TempChar[5] & 0x04 ) >> 2 );
AF.Transport_Private_Data_Flag = (( TempChar[5] & 0x02 ) >> 1 );
AF.Adaptation_Field_Extension_Flag = (( TempChar[5] & 0x01 ) );
int CurrentOffset = 6;
if( AF.PCR_Flag ) {
AF.Program_Clock_Reference_Base_MSB = ( ( ( TempChar[CurrentOffset] ) & 0x80 ) >> 7 );
AF.Program_Clock_Reference_Base = ( ( ( TempChar[CurrentOffset] ) & 0x7F ) << 25 );
AF.Program_Clock_Reference_Base += ( ( TempChar[CurrentOffset+1] ) << 17 );
AF.Program_Clock_Reference_Base += ( ( TempChar[CurrentOffset+2] ) << 9 );
AF.Program_Clock_Reference_Base += ( ( TempChar[CurrentOffset+3] ) << 1 );
AF.Program_Clock_Reference_Base += ( ( ( TempChar[CurrentOffset+4] ) & 0x80 ) >> 7 );
AF.PCR_Reserved = ( ( TempChar[CurrentOffset+4] ) & 0x7E ) >> 1;
AF.Program_Clock_Reference_Extension = ( ( TempChar[CurrentOffset+4] ) & 0x01 ) << 8 + TempChar[CurrentOffset+5];
CurrentOffset += 6;
}
}
/// Prints an AF to STDOUT
/// \param AF The Adaptation Field to be print
/// \param offset A string indicating the indentation of the outputed data
void print_af( adaptation_field AF, std::string offset="\t" ) {
printf( "%sAdaptation Field\n", offset.c_str() );
printf( "%s\tAdaptation Field Length\t\t\t%X\n", offset.c_str(), AF.Adaptation_Field_Length );
printf( "%s\tDiscontinuity Indicator\t\t\t%X\n", offset.c_str(), AF.Discontinuity_Indicator );
printf( "%s\tRandom Access Indicator\t\t\t%X\n", offset.c_str(), AF.Random_Access_Indicator );
printf( "%s\tElementary Stream Priority Indicator\t%X\n", offset.c_str(), AF.Elementary_Stream_Priority_Indicator );
printf( "%s\tPCR Flag\t\t\t\t%X\n", offset.c_str(), AF.PCR_Flag );
printf( "%s\tOPCR Flag\t\t\t\t%X\n", offset.c_str(), AF.OPCR_Flag );
printf( "%s\tSplicing Point Flag\t\t\t%X\n", offset.c_str(), AF.Splicing_Point_Flag );
printf( "%s\tTransport Private Data Flag\t\t%X\n", offset.c_str(), AF.Transport_Private_Data_Flag );
printf( "%s\tAdaptation Field Extension Flag\t\t%X\n", offset.c_str(), AF.Adaptation_Field_Extension_Flag );
if( AF.PCR_Flag ) {
printf( "\n%s\tProgram Clock Reference Base\t\t%X%.8X\n", offset.c_str(), AF.Program_Clock_Reference_Base_MSB, AF.Program_Clock_Reference_Base );
printf( "%s\tReserved\t\t\t\t%d\n", offset.c_str(), AF.PCR_Reserved );
printf( "%s\tProgram Clock Reference Extension\t%X\n", offset.c_str(), AF.Program_Clock_Reference_Extension );
}
}
/// Locates a Packet ID in the PAT
/// \param PAT The PAT to look in
/// \param PID The PID to check for existense
/// \return The program number of the PAT, or -1 if not found
int find_pid_in_pat( program_association_table PAT, unsigned int PID ) {
for( int i = 0; i < PAT.Entries.size(); i++ ) {
if( PAT.Entries[i].Program_Map_PID == PID ) {
return PAT.Entries[i].Program_Number;
}
}
return -1;
}
/// Checks whether a packet is part of an elementary stream
/// \param PMT The program mapping table
/// \param PID The PID of the packet
/// \return PID is found in the elementary streams of PMT
bool is_elementary_pid( program_mapping_table PMT, unsigned int PID ) {
for( int i = 0; i < PMT.Entries.size(); i++ ) {
if( PMT.Entries[i].Elementary_PID == PID ) {
return true;
}
}
return false;
}
/// The main function of the analyser
int main( ) {
std::string File;
unsigned int BlockNo = 1;
unsigned int EmptyBlocks = 0;
unsigned char TempChar[188];
unsigned char Skip;
unsigned int SkippedBytes = 0;
unsigned int Adaptation;
program_association_table PAT;
program_mapping_table PMT;
adaptation_field AF;
pes_packet PES;
int ProgramNum;
std::ofstream outfile;
outfile.open( "out.ts" );
while( std::cin.good( ) && BlockNo <= 10000 ) {
for( int i = 0; i < 188; i++ ) {
if( std::cin.good( ) ){ TempChar[i] = std::cin.get(); }
}
int PID = ( ( TempChar[1] & 0x1F ) << 8 ) + ( TempChar[2] );
if( true ) {
printf( "Block %d:\n", BlockNo );
printf( "\tSync Byte:\t\t\t%X\n", TempChar[0] );
printf( "\tTransport Error Indicator:\t%d\n", ( ( TempChar[1] & 0x80 ) != 0 ) );
printf( "\tPayload Unit Start Indicator:\t%d\n", ( ( TempChar[1] & 0x40 ) != 0 ) );
printf( "\tTransport Priority:\t\t%d\n", ( ( TempChar[1] & 0x20 ) != 0 ) );
printf( "\tPID:\t\t\t\t%X\n", ( ( TempChar[1] & 0x1F ) << 8 ) + ( TempChar[2] ) );
printf( "\tScrambling control:\t\t%d\n", ( ( TempChar[3] & 0xC0 ) >> 6 ) );
printf( "\tAdaptation Field Exists:\t%d\n", ( ( TempChar[3] & 0x30 ) >> 4 ) );
printf( "\tContinuity Counter:\t\t%X\n", ( TempChar[3] & 0x0F ) );
Adaptation = ( ( TempChar[3] & 0x30 ) >> 4 );
//Adaptation Field Exists
if( Adaptation == 2 || Adaptation == 3 ) {
fprintf( stderr, "Block: %d -> Adaptation == %d\n", BlockNo, Adaptation );
fill_af( AF, TempChar );
print_af( AF );
}
if( ( ( ( TempChar[1] & 0x1F ) << 8 ) + TempChar[2] ) == 0 ) {
fill_pat( PAT, TempChar );
print_pat( PAT, true );
}
ProgramNum = find_pid_in_pat( PAT, ( ( TempChar[1] & 0x1F ) << 8 ) + ( TempChar[2] ) );
if( ProgramNum != -1 ) {
printf( "\tProgram Mapping Table for program %X\n", ProgramNum );
fill_pmt( PMT, TempChar );
print_pmt( PMT, true );
}
if( ( ( TempChar[1] & 0x40 ) ) && ( ( TempChar[1] & 0x1F ) << 8 ) + ( TempChar[2] ) ) {
fill_pes( PES, TempChar, ( Adaptation == 3 ? 5 + TempChar[4] : 4 ) );
print_pes( PES );
}
BlockNo ++;
} else {
EmptyBlocks ++;
}
//Find Next Sync Byte
SkippedBytes = 0;
while( (int)std::cin.peek( ) != 0x47 ) {
std::cin >> Skip;
SkippedBytes ++;
}
}
return 0;
}

View file

@ -0,0 +1,7 @@
outdir=../..
out_PROGRAMS=MistDTSC2FLV MistFLV2DTSC
AM_LDFLAGS=-L../../lib
MistDTSC2FLV_SOURCES=dtsc2flv.cpp
MistDTSC2FLV_LDADD=-ldtsc -lflv_tag -lamf -lsocket
MistFLV2DTSC_SOURCES=dtsc2flv.cpp
MistFLV2DTSC_LDADD=-ldtsc -lflv_tag -lamf -lsocket

View file

@ -10,9 +10,9 @@
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include "../../util/flv_tag.h" //FLV support
#include "../../util/dtsc.h" //DTSC support
#include "../../util/amf.h" //AMF support
#include "../../lib/flv_tag.h" //FLV support
#include "../../lib/dtsc.h" //DTSC support
#include "../../lib/amf.h" //AMF support
/// Holds all code that converts filetypes to DTSC.
namespace Converters{

View file

@ -10,9 +10,9 @@
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include "../../util/flv_tag.h" //FLV support
#include "../../util/dtsc.h" //DTSC support
#include "../../util/amf.h" //AMF support
#include "../../lib/flv_tag.h" //FLV support
#include "../../lib/dtsc.h" //DTSC support
#include "../../lib/amf.h" //AMF support
/// Holds all code that converts filetypes to DTSC.
namespace Converters{