Such style. (Code style unification)

This commit is contained in:
Thulinma 2014-06-18 10:39:27 +02:00
parent 57bcd8f25c
commit 8c01ec8897
57 changed files with 6548 additions and 6437 deletions

View file

@ -57,30 +57,30 @@ freely, subject to the following restrictions:
// Which platform are we on?
#if !defined(_TTHREAD_PLATFORM_DEFINED_)
#if defined(_WIN32) || defined(__WIN32__) || defined(__WINDOWS__)
#define _TTHREAD_WIN32_
#else
#define _TTHREAD_POSIX_
#endif
#define _TTHREAD_PLATFORM_DEFINED_
#if defined(_WIN32) || defined(__WIN32__) || defined(__WINDOWS__)
#define _TTHREAD_WIN32_
#else
#define _TTHREAD_POSIX_
#endif
#define _TTHREAD_PLATFORM_DEFINED_
#endif
// Platform specific includes
#if defined(_TTHREAD_WIN32_)
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#define __UNDEF_LEAN_AND_MEAN
#endif
#include <windows.h>
#ifdef __UNDEF_LEAN_AND_MEAN
#undef WIN32_LEAN_AND_MEAN
#undef __UNDEF_LEAN_AND_MEAN
#endif
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#define __UNDEF_LEAN_AND_MEAN
#endif
#include <windows.h>
#ifdef __UNDEF_LEAN_AND_MEAN
#undef WIN32_LEAN_AND_MEAN
#undef __UNDEF_LEAN_AND_MEAN
#endif
#else
#include <pthread.h>
#include <signal.h>
#include <sched.h>
#include <unistd.h>
#include <pthread.h>
#include <signal.h>
#include <sched.h>
#include <unistd.h>
#endif
// Generic includes
@ -95,23 +95,23 @@ freely, subject to the following restrictions:
// Do we have a fully featured C++11 compiler?
#if (__cplusplus > 199711L) || (defined(__STDCXX_VERSION__) && (__STDCXX_VERSION__ >= 201001L))
#define _TTHREAD_CPP11_
#define _TTHREAD_CPP11_
#endif
// ...at least partial C++11?
#if defined(_TTHREAD_CPP11_) || defined(__GXX_EXPERIMENTAL_CXX0X__) || defined(__GXX_EXPERIMENTAL_CPP0X__)
#define _TTHREAD_CPP11_PARTIAL_
#define _TTHREAD_CPP11_PARTIAL_
#endif
// Macro for disabling assignments of objects.
#ifdef _TTHREAD_CPP11_PARTIAL_
#define _TTHREAD_DISABLE_ASSIGNMENT(name) \
name(const name&) = delete; \
name& operator=(const name&) = delete;
#define _TTHREAD_DISABLE_ASSIGNMENT(name) \
name(const name&) = delete; \
name& operator=(const name&) = delete;
#else
#define _TTHREAD_DISABLE_ASSIGNMENT(name) \
name(const name&); \
name& operator=(const name&);
#define _TTHREAD_DISABLE_ASSIGNMENT(name) \
name(const name&); \
name& operator=(const name&);
#endif
/// @def thread_local
@ -136,11 +136,11 @@ freely, subject to the following restrictions:
/// @hideinitializer
#if !defined(_TTHREAD_CPP11_) && !defined(thread_local)
#if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
#define thread_local __thread
#else
#define thread_local __declspec(thread)
#endif
#if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
#define thread_local __thread
#else
#define thread_local __declspec(thread)
#endif
#endif
@ -156,91 +156,86 @@ namespace tthread {
/// program may deadlock if the thread that owns a mutex object calls lock()
/// on that object).
/// @see recursive_mutex
class mutex {
public:
/// Constructor.
mutex()
class mutex {
public:
/// Constructor.
mutex()
#if defined(_TTHREAD_WIN32_)
: mAlreadyLocked(false)
: mAlreadyLocked(false)
#endif
{
#if defined(_TTHREAD_WIN32_)
InitializeCriticalSection(&mHandle);
#else
pthread_mutex_init(&mHandle, NULL);
#endif
}
/// Destructor.
~mutex()
{
#if defined(_TTHREAD_WIN32_)
DeleteCriticalSection(&mHandle);
#else
pthread_mutex_destroy(&mHandle);
#endif
}
/// Lock the mutex.
/// The method will block the calling thread until a lock on the mutex can
/// be obtained. The mutex remains locked until @c unlock() is called.
/// @see lock_guard
inline void lock()
{
#if defined(_TTHREAD_WIN32_)
EnterCriticalSection(&mHandle);
while(mAlreadyLocked) Sleep(1000); // Simulate deadlock...
mAlreadyLocked = true;
#else
pthread_mutex_lock(&mHandle);
#endif
}
/// Try to lock the mutex.
/// The method will try to lock the mutex. If it fails, the function will
/// return immediately (non-blocking).
/// @return @c true if the lock was acquired, or @c false if the lock could
/// not be acquired.
inline bool try_lock()
{
#if defined(_TTHREAD_WIN32_)
bool ret = (TryEnterCriticalSection(&mHandle) ? true : false);
if(ret && mAlreadyLocked)
{
LeaveCriticalSection(&mHandle);
ret = false;
#if defined(_TTHREAD_WIN32_)
InitializeCriticalSection(&mHandle);
#else
pthread_mutex_init(&mHandle, NULL);
#endif
}
return ret;
#else
return (pthread_mutex_trylock(&mHandle) == 0) ? true : false;
#endif
}
/// Unlock the mutex.
/// If any threads are waiting for the lock on this mutex, one of them will
/// be unblocked.
inline void unlock()
{
/// Destructor.
~mutex() {
#if defined(_TTHREAD_WIN32_)
mAlreadyLocked = false;
LeaveCriticalSection(&mHandle);
DeleteCriticalSection(&mHandle);
#else
pthread_mutex_unlock(&mHandle);
pthread_mutex_destroy(&mHandle);
#endif
}
}
_TTHREAD_DISABLE_ASSIGNMENT(mutex)
private:
/// Lock the mutex.
/// The method will block the calling thread until a lock on the mutex can
/// be obtained. The mutex remains locked until @c unlock() is called.
/// @see lock_guard
inline void lock() {
#if defined(_TTHREAD_WIN32_)
CRITICAL_SECTION mHandle;
bool mAlreadyLocked;
EnterCriticalSection(&mHandle);
while (mAlreadyLocked) Sleep(1000); // Simulate deadlock...
mAlreadyLocked = true;
#else
pthread_mutex_t mHandle;
pthread_mutex_lock(&mHandle);
#endif
}
/// Try to lock the mutex.
/// The method will try to lock the mutex. If it fails, the function will
/// return immediately (non-blocking).
/// @return @c true if the lock was acquired, or @c false if the lock could
/// not be acquired.
inline bool try_lock() {
#if defined(_TTHREAD_WIN32_)
bool ret = (TryEnterCriticalSection(&mHandle) ? true : false);
if (ret && mAlreadyLocked) {
LeaveCriticalSection(&mHandle);
ret = false;
}
return ret;
#else
return (pthread_mutex_trylock(&mHandle) == 0) ? true : false;
#endif
}
/// Unlock the mutex.
/// If any threads are waiting for the lock on this mutex, one of them will
/// be unblocked.
inline void unlock() {
#if defined(_TTHREAD_WIN32_)
mAlreadyLocked = false;
LeaveCriticalSection(&mHandle);
#else
pthread_mutex_unlock(&mHandle);
#endif
}
_TTHREAD_DISABLE_ASSIGNMENT(mutex)
private:
#if defined(_TTHREAD_WIN32_)
CRITICAL_SECTION mHandle;
bool mAlreadyLocked;
#else
pthread_mutex_t mHandle;
#endif
friend class condition_variable;
};
friend class condition_variable;
};
/// Recursive mutex class.
/// This is a mutual exclusion object for synchronizing access to shared
@ -248,81 +243,76 @@ class mutex {
/// may lock the mutex several times, as long as it unlocks the mutex the same
/// number of times).
/// @see mutex
class recursive_mutex {
public:
/// Constructor.
recursive_mutex()
{
class recursive_mutex {
public:
/// Constructor.
recursive_mutex() {
#if defined(_TTHREAD_WIN32_)
InitializeCriticalSection(&mHandle);
InitializeCriticalSection(&mHandle);
#else
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&mHandle, &attr);
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&mHandle, &attr);
#endif
}
}
/// Destructor.
~recursive_mutex()
{
/// Destructor.
~recursive_mutex() {
#if defined(_TTHREAD_WIN32_)
DeleteCriticalSection(&mHandle);
DeleteCriticalSection(&mHandle);
#else
pthread_mutex_destroy(&mHandle);
pthread_mutex_destroy(&mHandle);
#endif
}
}
/// Lock the mutex.
/// The method will block the calling thread until a lock on the mutex can
/// be obtained. The mutex remains locked until @c unlock() is called.
/// @see lock_guard
inline void lock()
{
/// Lock the mutex.
/// The method will block the calling thread until a lock on the mutex can
/// be obtained. The mutex remains locked until @c unlock() is called.
/// @see lock_guard
inline void lock() {
#if defined(_TTHREAD_WIN32_)
EnterCriticalSection(&mHandle);
EnterCriticalSection(&mHandle);
#else
pthread_mutex_lock(&mHandle);
pthread_mutex_lock(&mHandle);
#endif
}
}
/// Try to lock the mutex.
/// The method will try to lock the mutex. If it fails, the function will
/// return immediately (non-blocking).
/// @return @c true if the lock was acquired, or @c false if the lock could
/// not be acquired.
inline bool try_lock()
{
/// Try to lock the mutex.
/// The method will try to lock the mutex. If it fails, the function will
/// return immediately (non-blocking).
/// @return @c true if the lock was acquired, or @c false if the lock could
/// not be acquired.
inline bool try_lock() {
#if defined(_TTHREAD_WIN32_)
return TryEnterCriticalSection(&mHandle) ? true : false;
return TryEnterCriticalSection(&mHandle) ? true : false;
#else
return (pthread_mutex_trylock(&mHandle) == 0) ? true : false;
return (pthread_mutex_trylock(&mHandle) == 0) ? true : false;
#endif
}
}
/// Unlock the mutex.
/// If any threads are waiting for the lock on this mutex, one of them will
/// be unblocked.
inline void unlock()
{
/// Unlock the mutex.
/// If any threads are waiting for the lock on this mutex, one of them will
/// be unblocked.
inline void unlock() {
#if defined(_TTHREAD_WIN32_)
LeaveCriticalSection(&mHandle);
LeaveCriticalSection(&mHandle);
#else
pthread_mutex_unlock(&mHandle);
pthread_mutex_unlock(&mHandle);
#endif
}
}
_TTHREAD_DISABLE_ASSIGNMENT(recursive_mutex)
_TTHREAD_DISABLE_ASSIGNMENT(recursive_mutex)
private:
private:
#if defined(_TTHREAD_WIN32_)
CRITICAL_SECTION mHandle;
CRITICAL_SECTION mHandle;
#else
pthread_mutex_t mHandle;
pthread_mutex_t mHandle;
#endif
friend class condition_variable;
};
friend class condition_variable;
};
/// Lock guard class.
/// The constructor locks the mutex, and the destructor unlocks the mutex, so
@ -339,30 +329,28 @@ class recursive_mutex {
/// }
/// @endcode
template <class T>
class lock_guard {
public:
typedef T mutex_type;
template <class T>
class lock_guard {
public:
typedef T mutex_type;
lock_guard() : mMutex(0) {}
lock_guard() : mMutex(0) {}
/// The constructor locks the mutex.
explicit lock_guard(mutex_type &aMutex)
{
mMutex = &aMutex;
mMutex->lock();
}
/// The constructor locks the mutex.
explicit lock_guard(mutex_type & aMutex) {
mMutex = &aMutex;
mMutex->lock();
}
/// The destructor unlocks the mutex.
~lock_guard()
{
if(mMutex)
mMutex->unlock();
}
/// The destructor unlocks the mutex.
~lock_guard() {
if (mMutex)
mMutex->unlock();
}
private:
mutex_type * mMutex;
};
private:
mutex_type * mMutex;
};
/// Condition variable class.
/// This is a signalling object for synchronizing the execution flow for
@ -389,323 +377,308 @@ class lock_guard {
/// cond.notify_all();
/// }
/// @endcode
class condition_variable {
public:
/// Constructor.
class condition_variable {
public:
/// Constructor.
#if defined(_TTHREAD_WIN32_)
condition_variable();
condition_variable();
#else
condition_variable()
{
pthread_cond_init(&mHandle, NULL);
}
condition_variable() {
pthread_cond_init(&mHandle, NULL);
}
#endif
/// Destructor.
/// Destructor.
#if defined(_TTHREAD_WIN32_)
~condition_variable();
~condition_variable();
#else
~condition_variable()
{
pthread_cond_destroy(&mHandle);
}
~condition_variable() {
pthread_cond_destroy(&mHandle);
}
#endif
/// Wait for the condition.
/// The function will block the calling thread until the condition variable
/// is woken by @c notify_one(), @c notify_all() or a spurious wake up.
/// @param[in] aMutex A mutex that will be unlocked when the wait operation
/// starts, an locked again as soon as the wait operation is finished.
template <class _mutexT>
inline void wait(_mutexT &aMutex)
{
/// Wait for the condition.
/// The function will block the calling thread until the condition variable
/// is woken by @c notify_one(), @c notify_all() or a spurious wake up.
/// @param[in] aMutex A mutex that will be unlocked when the wait operation
/// starts, an locked again as soon as the wait operation is finished.
template <class _mutexT>
inline void wait(_mutexT & aMutex) {
#if defined(_TTHREAD_WIN32_)
// Increment number of waiters
EnterCriticalSection(&mWaitersCountLock);
++ mWaitersCount;
LeaveCriticalSection(&mWaitersCountLock);
// Increment number of waiters
EnterCriticalSection(&mWaitersCountLock);
++ mWaitersCount;
LeaveCriticalSection(&mWaitersCountLock);
// Release the mutex while waiting for the condition (will decrease
// the number of waiters when done)...
aMutex.unlock();
_wait();
aMutex.lock();
// Release the mutex while waiting for the condition (will decrease
// the number of waiters when done)...
aMutex.unlock();
_wait();
aMutex.lock();
#else
pthread_cond_wait(&mHandle, &aMutex.mHandle);
pthread_cond_wait(&mHandle, &aMutex.mHandle);
#endif
}
}
/// Notify one thread that is waiting for the condition.
/// If at least one thread is blocked waiting for this condition variable,
/// one will be woken up.
/// @note Only threads that started waiting prior to this call will be
/// woken up.
/// Notify one thread that is waiting for the condition.
/// If at least one thread is blocked waiting for this condition variable,
/// one will be woken up.
/// @note Only threads that started waiting prior to this call will be
/// woken up.
#if defined(_TTHREAD_WIN32_)
void notify_one();
void notify_one();
#else
inline void notify_one()
{
pthread_cond_signal(&mHandle);
}
inline void notify_one() {
pthread_cond_signal(&mHandle);
}
#endif
/// Notify all threads that are waiting for the condition.
/// All threads that are blocked waiting for this condition variable will
/// be woken up.
/// @note Only threads that started waiting prior to this call will be
/// woken up.
/// Notify all threads that are waiting for the condition.
/// All threads that are blocked waiting for this condition variable will
/// be woken up.
/// @note Only threads that started waiting prior to this call will be
/// woken up.
#if defined(_TTHREAD_WIN32_)
void notify_all();
void notify_all();
#else
inline void notify_all()
{
pthread_cond_broadcast(&mHandle);
}
inline void notify_all() {
pthread_cond_broadcast(&mHandle);
}
#endif
_TTHREAD_DISABLE_ASSIGNMENT(condition_variable)
_TTHREAD_DISABLE_ASSIGNMENT(condition_variable)
private:
private:
#if defined(_TTHREAD_WIN32_)
void _wait();
HANDLE mEvents[2]; ///< Signal and broadcast event HANDLEs.
unsigned int mWaitersCount; ///< Count of the number of waiters.
CRITICAL_SECTION mWaitersCountLock; ///< Serialize access to mWaitersCount.
void _wait();
HANDLE mEvents[2]; ///< Signal and broadcast event HANDLEs.
unsigned int mWaitersCount; ///< Count of the number of waiters.
CRITICAL_SECTION mWaitersCountLock; ///< Serialize access to mWaitersCount.
#else
pthread_cond_t mHandle;
pthread_cond_t mHandle;
#endif
};
};
/// Thread class.
class thread {
public:
class thread {
public:
#if defined(_TTHREAD_WIN32_)
typedef HANDLE native_handle_type;
typedef HANDLE native_handle_type;
#else
typedef pthread_t native_handle_type;
typedef pthread_t native_handle_type;
#endif
class id;
class id;
/// Default constructor.
/// Construct a @c thread object without an associated thread of execution
/// (i.e. non-joinable).
thread() : mHandle(0), mNotAThread(true)
/// Default constructor.
/// Construct a @c thread object without an associated thread of execution
/// (i.e. non-joinable).
thread() : mHandle(0), mNotAThread(true)
#if defined(_TTHREAD_WIN32_)
, mWin32ThreadID(0)
, mWin32ThreadID(0)
#endif
{}
{}
/// Thread starting constructor.
/// Construct a @c thread object with a new thread of execution.
/// @param[in] aFunction A function pointer to a function of type:
/// <tt>void fun(void * arg)</tt>
/// @param[in] aArg Argument to the thread function.
/// @note This constructor is not fully compatible with the standard C++
/// thread class. It is more similar to the pthread_create() (POSIX) and
/// CreateThread() (Windows) functions.
thread(void (*aFunction)(void *), void * aArg);
/// Thread starting constructor.
/// Construct a @c thread object with a new thread of execution.
/// @param[in] aFunction A function pointer to a function of type:
/// <tt>void fun(void * arg)</tt>
/// @param[in] aArg Argument to the thread function.
/// @note This constructor is not fully compatible with the standard C++
/// thread class. It is more similar to the pthread_create() (POSIX) and
/// CreateThread() (Windows) functions.
thread(void (*aFunction)(void *), void * aArg);
/// Destructor.
/// @note If the thread is joinable upon destruction, @c std::terminate()
/// will be called, which terminates the process. It is always wise to do
/// @c join() before deleting a thread object.
~thread();
/// Destructor.
/// @note If the thread is joinable upon destruction, @c std::terminate()
/// will be called, which terminates the process. It is always wise to do
/// @c join() before deleting a thread object.
~thread();
/// Wait for the thread to finish (join execution flows).
/// After calling @c join(), the thread object is no longer associated with
/// a thread of execution (i.e. it is not joinable, and you may not join
/// with it nor detach from it).
void join();
/// Wait for the thread to finish (join execution flows).
/// After calling @c join(), the thread object is no longer associated with
/// a thread of execution (i.e. it is not joinable, and you may not join
/// with it nor detach from it).
void join();
/// Check if the thread is joinable.
/// A thread object is joinable if it has an associated thread of execution.
bool joinable() const;
/// Check if the thread is joinable.
/// A thread object is joinable if it has an associated thread of execution.
bool joinable() const;
/// Detach from the thread.
/// After calling @c detach(), the thread object is no longer assicated with
/// a thread of execution (i.e. it is not joinable). The thread continues
/// execution without the calling thread blocking, and when the thread
/// ends execution, any owned resources are released.
void detach();
/// Detach from the thread.
/// After calling @c detach(), the thread object is no longer assicated with
/// a thread of execution (i.e. it is not joinable). The thread continues
/// execution without the calling thread blocking, and when the thread
/// ends execution, any owned resources are released.
void detach();
/// Return the thread ID of a thread object.
id get_id() const;
/// Return the thread ID of a thread object.
id get_id() const;
/// Get the native handle for this thread.
/// @note Under Windows, this is a @c HANDLE, and under POSIX systems, this
/// is a @c pthread_t.
inline native_handle_type native_handle()
{
return mHandle;
}
/// Get the native handle for this thread.
/// @note Under Windows, this is a @c HANDLE, and under POSIX systems, this
/// is a @c pthread_t.
inline native_handle_type native_handle() {
return mHandle;
}
/// Determine the number of threads which can possibly execute concurrently.
/// This function is useful for determining the optimal number of threads to
/// use for a task.
/// @return The number of hardware thread contexts in the system.
/// @note If this value is not defined, the function returns zero (0).
static unsigned hardware_concurrency();
/// Determine the number of threads which can possibly execute concurrently.
/// This function is useful for determining the optimal number of threads to
/// use for a task.
/// @return The number of hardware thread contexts in the system.
/// @note If this value is not defined, the function returns zero (0).
static unsigned hardware_concurrency();
_TTHREAD_DISABLE_ASSIGNMENT(thread)
_TTHREAD_DISABLE_ASSIGNMENT(thread)
private:
native_handle_type mHandle; ///< Thread handle.
mutable mutex mDataMutex; ///< Serializer for access to the thread private data.
bool mNotAThread; ///< True if this object is not a thread of execution.
void * ti_copy;
private:
native_handle_type mHandle; ///< Thread handle.
mutable mutex mDataMutex; ///< Serializer for access to the thread private data.
bool mNotAThread; ///< True if this object is not a thread of execution.
void * ti_copy;
#if defined(_TTHREAD_WIN32_)
unsigned int mWin32ThreadID; ///< Unique thread ID (filled out by _beginthreadex).
unsigned int mWin32ThreadID; ///< Unique thread ID (filled out by _beginthreadex).
#endif
// This is the internal thread wrapper function.
// This is the internal thread wrapper function.
#if defined(_TTHREAD_WIN32_)
static unsigned WINAPI wrapper_function(void * aArg);
static unsigned WINAPI wrapper_function(void * aArg);
#else
static void * wrapper_function(void * aArg);
static void * wrapper_function(void * aArg);
#endif
};
};
/// Thread ID.
/// The thread ID is a unique identifier for each thread.
/// @see thread::get_id()
class thread::id {
public:
/// Default constructor.
/// The default constructed ID is that of thread without a thread of
/// execution.
id() : mId(0) {};
class thread::id {
public:
/// Default constructor.
/// The default constructed ID is that of thread without a thread of
/// execution.
id() : mId(0) {};
id(unsigned long int aId) : mId(aId) {};
id(unsigned long int aId) : mId(aId) {};
id(const id& aId) : mId(aId.mId) {};
id(const id & aId) : mId(aId.mId) {};
inline id & operator=(const id &aId)
{
mId = aId.mId;
return *this;
}
inline id & operator=(const id & aId) {
mId = aId.mId;
return *this;
}
inline friend bool operator==(const id &aId1, const id &aId2)
{
return (aId1.mId == aId2.mId);
}
inline friend bool operator==(const id & aId1, const id & aId2) {
return (aId1.mId == aId2.mId);
}
inline friend bool operator!=(const id &aId1, const id &aId2)
{
return (aId1.mId != aId2.mId);
}
inline friend bool operator!=(const id & aId1, const id & aId2) {
return (aId1.mId != aId2.mId);
}
inline friend bool operator<=(const id &aId1, const id &aId2)
{
return (aId1.mId <= aId2.mId);
}
inline friend bool operator<=(const id & aId1, const id & aId2) {
return (aId1.mId <= aId2.mId);
}
inline friend bool operator<(const id &aId1, const id &aId2)
{
return (aId1.mId < aId2.mId);
}
inline friend bool operator<(const id & aId1, const id & aId2) {
return (aId1.mId < aId2.mId);
}
inline friend bool operator>=(const id &aId1, const id &aId2)
{
return (aId1.mId >= aId2.mId);
}
inline friend bool operator>=(const id & aId1, const id & aId2) {
return (aId1.mId >= aId2.mId);
}
inline friend bool operator>(const id &aId1, const id &aId2)
{
return (aId1.mId > aId2.mId);
}
inline friend bool operator>(const id & aId1, const id & aId2) {
return (aId1.mId > aId2.mId);
}
inline friend std::ostream& operator <<(std::ostream &os, const id &obj)
{
os << obj.mId;
return os;
}
inline friend std::ostream & operator <<(std::ostream & os, const id & obj) {
os << obj.mId;
return os;
}
private:
unsigned long int mId;
};
private:
unsigned long int mId;
};
// Related to <ratio> - minimal to be able to support chrono.
typedef long long __intmax_t;
typedef long long __intmax_t;
/// Minimal implementation of the @c ratio class. This class provides enough
/// functionality to implement some basic @c chrono classes.
template <__intmax_t N, __intmax_t D = 1> class ratio {
public:
static double _as_double() { return double(N) / double(D); }
};
/// Minimal implementation of the @c chrono namespace.
/// The @c chrono namespace provides types for specifying time intervals.
namespace chrono {
/// Duration template class. This class provides enough functionality to
/// implement @c this_thread::sleep_for().
template <class _Rep, class _Period = ratio<1> > class duration {
private:
_Rep rep_;
template <__intmax_t N, __intmax_t D = 1> class ratio {
public:
typedef _Rep rep;
typedef _Period period;
/// Construct a duration object with the given duration.
template <class _Rep2>
explicit duration(const _Rep2& r) : rep_(r) {};
/// Return the value of the duration object.
rep count() const
{
return rep_;
static double _as_double() {
return double(N) / double(D);
}
};
// Standard duration types.
typedef duration<__intmax_t, ratio<1, 1000000000> > nanoseconds; ///< Duration with the unit nanoseconds.
typedef duration<__intmax_t, ratio<1, 1000000> > microseconds; ///< Duration with the unit microseconds.
typedef duration<__intmax_t, ratio<1, 1000> > milliseconds; ///< Duration with the unit milliseconds.
typedef duration<__intmax_t> seconds; ///< Duration with the unit seconds.
typedef duration<__intmax_t, ratio<60> > minutes; ///< Duration with the unit minutes.
typedef duration<__intmax_t, ratio<3600> > hours; ///< Duration with the unit hours.
}
/// Minimal implementation of the @c chrono namespace.
/// The @c chrono namespace provides types for specifying time intervals.
namespace chrono {
/// Duration template class. This class provides enough functionality to
/// implement @c this_thread::sleep_for().
template <class _Rep, class _Period = ratio<1> > class duration {
private:
_Rep rep_;
public:
typedef _Rep rep;
typedef _Period period;
/// Construct a duration object with the given duration.
template <class _Rep2>
explicit duration(const _Rep2 & r) : rep_(r) {};
/// Return the value of the duration object.
rep count() const {
return rep_;
}
};
// Standard duration types.
typedef duration<__intmax_t, ratio<1, 1000000000> > nanoseconds; ///< Duration with the unit nanoseconds.
typedef duration<__intmax_t, ratio<1, 1000000> > microseconds; ///< Duration with the unit microseconds.
typedef duration<__intmax_t, ratio<1, 1000> > milliseconds; ///< Duration with the unit milliseconds.
typedef duration<__intmax_t> seconds; ///< Duration with the unit seconds.
typedef duration<__intmax_t, ratio<60> > minutes; ///< Duration with the unit minutes.
typedef duration<__intmax_t, ratio<3600> > hours; ///< Duration with the unit hours.
}
/// The namespace @c this_thread provides methods for dealing with the
/// calling thread.
namespace this_thread {
/// Return the thread ID of the calling thread.
thread::id get_id();
namespace this_thread {
/// Return the thread ID of the calling thread.
thread::id get_id();
/// Yield execution to another thread.
/// Offers the operating system the opportunity to schedule another thread
/// that is ready to run on the current processor.
inline void yield()
{
/// Yield execution to another thread.
/// Offers the operating system the opportunity to schedule another thread
/// that is ready to run on the current processor.
inline void yield() {
#if defined(_TTHREAD_WIN32_)
Sleep(0);
Sleep(0);
#else
sched_yield();
sched_yield();
#endif
}
}
/// Blocks the calling thread for a period of time.
/// @param[in] aTime Minimum time to put the thread to sleep.
/// Example usage:
/// @code
/// // Sleep for 100 milliseconds
/// this_thread::sleep_for(chrono::milliseconds(100));
/// @endcode
/// @note Supported duration types are: nanoseconds, microseconds,
/// milliseconds, seconds, minutes and hours.
template <class _Rep, class _Period> void sleep_for(const chrono::duration<_Rep, _Period>& aTime)
{
/// Blocks the calling thread for a period of time.
/// @param[in] aTime Minimum time to put the thread to sleep.
/// Example usage:
/// @code
/// // Sleep for 100 milliseconds
/// this_thread::sleep_for(chrono::milliseconds(100));
/// @endcode
/// @note Supported duration types are: nanoseconds, microseconds,
/// milliseconds, seconds, minutes and hours.
template <class _Rep, class _Period> void sleep_for(const chrono::duration<_Rep, _Period> & aTime) {
#if defined(_TTHREAD_WIN32_)
Sleep(int(double(aTime.count()) * (1000.0 * _Period::_as_double()) + 0.5));
Sleep(int(double(aTime.count()) * (1000.0 * _Period::_as_double()) + 0.5));
#else
usleep(int(double(aTime.count()) * (1000000.0 * _Period::_as_double()) + 0.5));
usleep(int(double(aTime.count()) * (1000000.0 * _Period::_as_double()) + 0.5));
#endif
}
}
}
}