Various fixes and improvements, backported from Pro version. Code by Erik Zandvliet.

This commit is contained in:
Thulinma 2015-11-05 17:05:21 +01:00
parent 5cce37c521
commit b28a619fc6
13 changed files with 383 additions and 550 deletions

View file

@ -26,7 +26,7 @@ namespace Bit{
} }
/// Retrieves a long in network order from the pointer p. /// Retrieves a long in network order from the pointer p.
inline unsigned long btohl(char * p) { inline unsigned long btohl(const char * p) {
return ((unsigned long)p[0] << 24) | ((unsigned long)p[1] << 16) | ((unsigned long)p[2] << 8) | p[3]; return ((unsigned long)p[0] << 24) | ((unsigned long)p[1] << 16) | ((unsigned long)p[2] << 8) | p[3];
} }

View file

@ -26,14 +26,14 @@ namespace Utils {
} }
} }
void bitstream::append(char * input, size_t bytes) { void bitstream::append(const char * input, size_t bytes) {
if (checkBufferSize(dataSize + bytes)) { if (checkBufferSize(dataSize + bytes)) {
memcpy(data + dataSize, input, bytes); memcpy(data + dataSize, input, bytes);
dataSize += bytes; dataSize += bytes;
} }
} }
void bitstream::append(std::string input) { void bitstream::append(const std::string & input) {
append((char *)input.c_str(), input.size()); append((char *)input.c_str(), input.size());
} }

View file

@ -1,3 +1,4 @@
#pragma once
#include<string> #include<string>
namespace Utils { namespace Utils {
@ -12,8 +13,8 @@ namespace Utils {
append(std::string(input, 1)); append(std::string(input, 1));
return *this; return *this;
}; };
void append(char * input, size_t bytes); void append(const char * input, size_t bytes);
void append(std::string input); void append(const std::string & input);
long long unsigned int size(); long long unsigned int size();
void skip(size_t count); void skip(size_t count);
long long unsigned int get(size_t count); long long unsigned int get(size_t count);

View file

@ -434,7 +434,7 @@ void Util::Config::activate() {
} }
struct sigaction new_action; struct sigaction new_action;
struct sigaction cur_action; struct sigaction cur_action;
new_action.sa_handler = signal_handler; new_action.sa_sigaction = signal_handler;
sigemptyset(&new_action.sa_mask); sigemptyset(&new_action.sa_mask);
new_action.sa_flags = 0; new_action.sa_flags = 0;
sigaction(SIGINT, &new_action, NULL); sigaction(SIGINT, &new_action, NULL);
@ -452,7 +452,8 @@ void Util::Config::activate() {
/// Basic signal handler. Sets is_active to false if it receives /// Basic signal handler. Sets is_active to false if it receives
/// a SIGINT, SIGHUP or SIGTERM signal, reaps children for the SIGCHLD /// a SIGINT, SIGHUP or SIGTERM signal, reaps children for the SIGCHLD
/// signal, and ignores all other signals. /// signal, and ignores all other signals.
void Util::Config::signal_handler(int signum) { void Util::Config::signal_handler(int signum, siginfo_t * sigInfo, void * ignore) {
HIGH_MSG("Received signal %d from process %d", signum, sigInfo->si_pid);
switch (signum) { switch (signum) {
case SIGINT: //these three signals will set is_active to false. case SIGINT: //these three signals will set is_active to false.
case SIGHUP: case SIGHUP:

View file

@ -9,6 +9,7 @@
#include <string> #include <string>
#include "json.h" #include "json.h"
#include <signal.h>
/// Contains utility code, not directly related to streaming media /// Contains utility code, not directly related to streaming media
namespace Util { namespace Util {
@ -18,7 +19,7 @@ namespace Util {
private: private:
JSON::Value vals; ///< Holds all current config values JSON::Value vals; ///< Holds all current config values
int long_count; int long_count;
static void signal_handler(int signum); static void signal_handler(int signum, siginfo_t * sigInfo, void * ignore);
public: public:
//variables //variables
static bool is_active; ///< Set to true by activate(), set to false by the signal handler. static bool is_active; ///< Set to true by activate(), set to false by the signal handler.

190
lib/h264.cpp Normal file
View file

@ -0,0 +1,190 @@
#include "h264.h"
#include <cstdlib>
#include <cstring>
#include "bitfields.h"
#include "bitstream.h"
#include "defines.h"
namespace h264 {
std::deque<nalu::nalData> analysePackets(const char * data, unsigned long len){
std::deque<nalu::nalData> res;
int offset = 0;
while (offset < len){
nalu::nalData entry;
entry.nalSize = Bit::btohl(data + offset);
entry.nalType = (data + offset)[4] & 0x1F;
res.push_back(entry);
offset += entry.nalSize + 4;
}
return res;
}
unsigned long toAnnexB(const char * data, unsigned long dataSize, char *& result){
//toAnnexB keeps the same size.
if (!result){
result = (char *)malloc(dataSize);
}
int offset = 0;
while (offset < dataSize){
//Read unit size
unsigned long unitSize = Bit::btohl(data + offset);
//Write annex b header
memset(result + offset, 0x00, 3);
result[offset + 3] = 0x01;
//Copy the nal unit
memcpy(result + offset + 4, data + offset + 4, unitSize);
//Update the offset
offset += 4 + unitSize;
}
return dataSize;
}
unsigned long fromAnnexB(const char * data, unsigned long dataSize, char *& result){
const char * lastCheck = data + dataSize - 3;
if (!result){
FAIL_MSG("No output buffer given to FromAnnexB");
return 0;
}
int offset = 0;
int newOffset = 0;
while (offset < dataSize){
const char * begin = data + offset;
while ( begin < lastCheck && !(!begin[0] && !begin[1] && begin[2] == 0x01)){
begin++;
if (begin < lastCheck && begin[0]){
begin++;
}
}
begin += 3;//Initialize begin after the first 0x000001 pattern.
if (begin > data + dataSize){
offset = dataSize;
continue;
}
const char * end = (const char*)memmem(begin, dataSize - (begin - data), "\000\000\001", 3);
if (!end) {
end = data + dataSize;
}
//Check for 4-byte lead in's. Yes, we access -1 here
if (end > begin && end[-1] == 0x00){
end--;
}
unsigned int nalSize = end - begin;
Bit::htobl(result + newOffset, nalSize);
memcpy(result + newOffset + 4, begin, nalSize);
newOffset += 4 + nalSize;
offset = end - data;
}
return newOffset;
}
sequenceParameterSet::sequenceParameterSet(const char * _data, unsigned long _dataLen) : data(_data), dataLen(_dataLen) {}
SPSMeta sequenceParameterSet::getCharacteristics() const {
SPSMeta result;
//For calculating width
unsigned int widthInMbs = 0;
unsigned int cropHorizontal = 0;
//For calculating height
bool mbsOnlyFlag = 0;
unsigned int heightInMapUnits = 0;
unsigned int cropVertical = 0;
//Fill the bitstream
Utils::bitstream bs;
for (unsigned int i = 1; i < dataLen; i++) {
if (i + 2 < dataLen && (memcmp(data + i, "\000\000\003", 3) == 0)){//Emulation prevention bytes
//Yes, we increase i here
bs.append(data + i, 2);
i += 2;
} else {
//No we don't increase i here
bs.append(data + i, 1);
}
}
char profileIdc = bs.get(8);
//Start skipping unused data
bs.skip(16);
bs.getUExpGolomb();
if (profileIdc == 100 || profileIdc == 110 || profileIdc == 122 || profileIdc == 244 || profileIdc == 44 || profileIdc == 83 || profileIdc == 86 || profileIdc == 118 || profileIdc == 128) {
//chroma format idc
if (bs.getUExpGolomb() == 3) {
bs.skip(1);
}
bs.getUExpGolomb();
bs.getUExpGolomb();
bs.skip(1);
if (bs.get(1)) {
DEBUG_MSG(DLVL_DEVEL, "Scaling matrix not implemented yet");
}
}
bs.getUExpGolomb();
unsigned int pic_order_cnt_type = bs.getUExpGolomb();
if (!pic_order_cnt_type) {
bs.getUExpGolomb();
} else if (pic_order_cnt_type == 1) {
DEBUG_MSG(DLVL_DEVEL, "This part of the implementation is incomplete(2), to be continued. If this message is shown, contact developers immediately.");
}
bs.getUExpGolomb();
bs.skip(1);
//Stop skipping data and start doing usefull stuff
widthInMbs = bs.getUExpGolomb() + 1;
heightInMapUnits = bs.getUExpGolomb() + 1;
mbsOnlyFlag = bs.get(1);//Gets used in height calculation
if (!mbsOnlyFlag) {
bs.skip(1);
}
bs.skip(1);
//cropping flag
if (bs.get(1)) {
cropHorizontal = bs.getUExpGolomb();//leftOffset
cropHorizontal += bs.getUExpGolomb();//rightOffset
cropVertical = bs.getUExpGolomb();//topOffset
cropVertical += bs.getUExpGolomb();//bottomOffset
}
//vuiParameters
if (bs.get(1)) {
//Skipping all the paramters we dont use
if (bs.get(1)) {
if (bs.get(8) == 255) {
bs.skip(32);
}
}
if (bs.get(1)) {
bs.skip(1);
}
if (bs.get(1)) {
bs.skip(4);
if (bs.get(1)) {
bs.skip(24);
}
}
if (bs.get(1)) {
bs.getUExpGolomb();
bs.getUExpGolomb();
}
//Decode timing info
if (bs.get(1)) {
unsigned int unitsInTick = bs.get(32);
unsigned int timeScale = bs.get(32);
result.fps = (double)timeScale / (2 * unitsInTick);
bs.skip(1);
}
}
result.width = (widthInMbs * 16) - (cropHorizontal * 2);
result.height = ((mbsOnlyFlag ? 1 : 2) * heightInMapUnits * 16) - (cropVertical * 2);
return result;
}
}

60
lib/h264.h Normal file
View file

@ -0,0 +1,60 @@
#include <deque>
#include <string>
#include "nal.h"
namespace h264 {
std::deque<nalu::nalData> analysePackets(const char * data, unsigned long len);
///Struct containing pre-calculated metadata of an SPS nal unit. Width and height in pixels, fps in Hz
struct SPSMeta {
unsigned int width;
unsigned int height;
double fps;
};
///Class for analyzing generic nal units
class NAL {
public:
NAL();
NAL(std::string & InputData);
bool ReadData(std::string & InputData, bool raw = false);
std::string AnnexB(bool LongIntro = false);
std::string SizePrepended();
int Type();
std::string getData();
protected:
unsigned int chroma_format_idc;///<the value of chroma_format_idc
std::string MyData;///<The h264 nal unit data
};
//NAL class
///Special instance of NAL class for analyzing SPS nal units
class SPS: public NAL {
public:
SPS(): NAL() {};
SPS(std::string & InputData, bool raw = false);
SPSMeta getCharacteristics();
void analyzeSPS();
};
///Special instance of NAL class for analyzing PPS nal units
class PPS: public NAL {
public:
PPS(): NAL() {};
PPS(std::string & InputData): NAL(InputData) {};
void analyzePPS();
};
class sequenceParameterSet {
public:
sequenceParameterSet(const char * _data, unsigned long _dataLen);
SPSMeta getCharacteristics() const;
private:
const char * data;
unsigned long dataLen;
};
}

View file

@ -657,12 +657,13 @@ JSON::Value & JSON::Value::operator[](const char * i) {
/// Retrieves or sets the JSON::Value at this position in the array. /// Retrieves or sets the JSON::Value at this position in the array.
/// Converts destructively to array if not already an array. /// Converts destructively to array if not already an array.
JSON::Value & JSON::Value::operator[](unsigned int i) { JSON::Value & JSON::Value::operator[](unsigned int i) {
static JSON::Value empty;
if (myType != ARRAY) { if (myType != ARRAY) {
null(); null();
myType = ARRAY; myType = ARRAY;
} }
while (i >= arrVal.size()) { while (i >= arrVal.size()) {
append(new JSON::Value()); append(empty);
} }
return *arrVal[i]; return *arrVal[i];
} }

View file

@ -1,507 +1,107 @@
#include <cstdlib>
#include <cstring>
#include <math.h>//for log
#include "nal.h" #include "nal.h"
#include "bitstream.h" #include "bitstream.h"
#include "bitfields.h"
#include "defines.h" #include "defines.h"
#include <iostream>
#include <iomanip>
#include <math.h>//for log
namespace h264 {
///empty constructor of NAL namespace nalu {
NAL::NAL() { std::deque<int> parseNalSizes(DTSC::Packet & pack){
std::deque<int> result;
} char * data;
unsigned int dataLen;
///Constructor capable of directly inputting NAL data from a string pack.getString("data", data, dataLen);
///\param InputData the nal input data, as a string int offset = 0;
NAL::NAL(std::string & InputData) { while (offset < dataLen){
ReadData(InputData); int nalSize = Bit::btohl(data + offset);
} result.push_back(nalSize + 4);
offset += nalSize + 4;
///Gets the raw NAL unit data, as a string
///\return the raw NAL unit data
std::string NAL::getData() {
return MyData;
}
///Reads data from a string,either raw or annexed
///\param InputData the h264 data, as string
///\param raw a boolean that determines whether the string contains raw h264 data or not
bool NAL::ReadData(std::string & InputData, bool raw) {
if (raw) {
MyData = InputData;
InputData.clear();
return true;
} }
std::string FullAnnexB;
FullAnnexB += (char)0x00;
FullAnnexB += (char)0x00;
FullAnnexB += (char)0x00;
FullAnnexB += (char)0x01;
std::string ShortAnnexB;
ShortAnnexB += (char)0x00;
ShortAnnexB += (char)0x00;
ShortAnnexB += (char)0x01;
if (InputData.size() < 3) {
//DEBUG_MSG(DLVL_DEVEL, "fal1");
return false;
}
bool AnnexB = false;
if (InputData.substr(0, 3) == ShortAnnexB) {
AnnexB = true;
}
if (InputData.substr(0, 4) == FullAnnexB) {
InputData.erase(0, 1);
AnnexB = true;
}
if (AnnexB) {
MyData = "";
InputData.erase(0, 3); //Intro Bytes
int Location = std::min(InputData.find(ShortAnnexB), InputData.find(FullAnnexB));
MyData = InputData.substr(0, Location);
InputData.erase(0, Location);
} else {
if (InputData.size() < 4) {
DEBUG_MSG(DLVL_DEVEL, "fal2");
return false;
}
unsigned int UnitLen = (InputData[0] << 24) + (InputData[1] << 16) + (InputData[2] << 8) + InputData[3];
if (InputData.size() < 4 + UnitLen) {
DEBUG_MSG(DLVL_DEVEL, "fal3");
return false;
}
InputData.erase(0, 4); //Remove Length
MyData = InputData.substr(0, UnitLen);
InputData.erase(0, UnitLen); //Remove this unit from the string
}
//DEBUG_MSG(DLVL_DEVEL, "tru");
return true;
}
///Returns an annex B prefix
///\param LongIntro determines whether it is a short or long annex B
///\return the desired annex B prefix
std::string NAL::AnnexB(bool LongIntro) {
std::string Result;
if (MyData.size()) {
if (LongIntro) {
Result += (char)0x00;
}
Result += (char)0x00;
Result += (char)0x00;
Result += (char)0x01; //Annex B Lead-In
Result += MyData;
}
return Result;
}
///Returns raw h264 data as Size Prepended
///\return the h264 data as Size prepended
std::string NAL::SizePrepended() {
std::string Result;
if (MyData.size()) {
int DataSize = MyData.size();
Result += (char)((DataSize & 0xFF000000) >> 24);
Result += (char)((DataSize & 0x00FF0000) >> 16);
Result += (char)((DataSize & 0x0000FF00) >> 8);
Result += (char)(DataSize & 0x000000FF); //Size Lead-In
Result += MyData;
}
return Result;
}
///returns the nal unit type
///\return the nal unit type
int NAL::Type() {
return (MyData[0] & 0x1F);
}
SPS::SPS(std::string & input, bool raw) : NAL() {
ReadData(input, raw);
}
///computes SPS data from an SPS nal unit, and saves them in a useful
///more human-readable format in the parameter spsmeta
///The function is based on the analyzeSPS() function. If more data needs to be stored in sps meta,
///refer to that function to determine which variable comes at which place (as all couts have been removed).
///\param spsmeta the sps metadata, in which data from the sps is stored
///\todo some h264 sps data types are not supported (due to them containing matrixes and have never been encountered in practice). If needed, these need to be implemented
SPSMeta SPS::getCharacteristics() {
SPSMeta result;
//For calculating width
unsigned int widthInMbs = 0;
unsigned int cropHorizontal = 0;
//For calculating height
bool mbsOnlyFlag = 0;
unsigned int heightInMapUnits = 0;
unsigned int cropVertical = 0;
Utils::bitstream bs;
for (unsigned int i = 1; i < MyData.size(); i++) {
if (i + 2 < MyData.size() && MyData.substr(i, 3) == std::string("\000\000\003", 3)) {
bs << MyData.substr(i, 2);
i += 2;
} else {
bs << MyData.substr(i, 1);
}
}
char profileIdc = bs.get(8);
//Start skipping unused data
bs.skip(16);
bs.getUExpGolomb();
if (profileIdc == 100 || profileIdc == 110 || profileIdc == 122 || profileIdc == 244 || profileIdc == 44 || profileIdc == 83 || profileIdc == 86 || profileIdc == 118 || profileIdc == 128) {
//chroma format idc
if (bs.getUExpGolomb() == 3) {
bs.skip(1);
}
bs.getUExpGolomb();
bs.getUExpGolomb();
bs.skip(1);
if (bs.get(1)) {
DEBUG_MSG(DLVL_DEVEL, "Scaling matrix not implemented yet");
}
}
bs.getUExpGolomb();
unsigned int pic_order_cnt_type = bs.getUExpGolomb();
if (!pic_order_cnt_type) {
bs.getUExpGolomb();
} else if (pic_order_cnt_type == 1) {
DEBUG_MSG(DLVL_DEVEL, "This part of the implementation is incomplete(2), to be continued. If this message is shown, contact developers immediately.");
}
bs.getUExpGolomb();
bs.skip(1);
//Stop skipping data and start doing usefull stuff
widthInMbs = bs.getUExpGolomb() + 1;
heightInMapUnits = bs.getUExpGolomb() + 1;
mbsOnlyFlag = bs.get(1);//Gets used in height calculation
if (!mbsOnlyFlag) {
bs.skip(1);
}
bs.skip(1);
//cropping flag
if (bs.get(1)) {
cropHorizontal = bs.getUExpGolomb();//leftOffset
cropHorizontal += bs.getUExpGolomb();//rightOffset
cropVertical = bs.getUExpGolomb();//topOffset
cropVertical += bs.getUExpGolomb();//bottomOffset
}
//vuiParameters
if (bs.get(1)) {
//Skipping all the paramters we dont use
if (bs.get(1)) {
if (bs.get(8) == 255) {
bs.skip(32);
}
}
if (bs.get(1)) {
bs.skip(1);
}
if (bs.get(1)) {
bs.skip(4);
if (bs.get(1)) {
bs.skip(24);
}
}
if (bs.get(1)) {
bs.getUExpGolomb();
bs.getUExpGolomb();
}
//Decode timing info
if (bs.get(1)) {
unsigned int unitsInTick = bs.get(32);
unsigned int timeScale = bs.get(32);
result.fps = (double)timeScale / (2 * unitsInTick);
bs.skip(1);
}
}
result.width = (widthInMbs * 16) - (cropHorizontal * 2);
result.height = ((mbsOnlyFlag ? 1 : 2) * heightInMapUnits * 16) - (cropVertical * 2);
return result; return result;
} }
///Analyzes an SPS nal unit, and prints the values of all existing fields std::string removeEmulationPrevention(const std::string & data) {
///\todo some h264 sps data types are not supported (due to them containing matrixes and have not yet been encountered in practice). If needed, these need to be implemented std::string result;
void SPS::analyzeSPS() { result.resize(data.size());
if (Type() != 7) { result[0] = data[0];
DEBUG_MSG(DLVL_DEVEL, "This is not an SPS, but type %d", Type()); result[1] = data[1];
return; unsigned int dataPtr = 2;
} unsigned int dataLen = data.size();
Utils::bitstream bs; unsigned int resPtr = 2;
//put rbsp bytes in mydata while (dataPtr + 2 < dataLen) {
for (unsigned int i = 1; i < MyData.size(); i++) { if (!data[dataPtr] && !data[dataPtr + 1] && data[dataPtr + 2] == 3){ //We have found an emulation prevention
//DEBUG_MSG(DLVL_DEVEL, "position %u out of %lu",i,MyData.size()); result[resPtr++] = data[dataPtr++];
if (i + 2 < MyData.size() && MyData.substr(i, 3) == std::string("\000\000\003", 3)) { result[resPtr++] = data[dataPtr++];
bs << MyData.substr(i, 2); dataPtr++; //Skip the emulation prevention byte
//DEBUG_MSG(DLVL_DEVEL, "0x000003 encountered at i = %u",i);
i += 2;
} else { } else {
bs << MyData.substr(i, 1); result[resPtr++] = data[dataPtr++];
} }
} }
//bs contains all rbsp bytes, now we can analyze them
std::cout << "seq_parameter_set_data()" << std::endl;
std::cout << std::hex << std::setfill('0') << std::setw(2);
char profileIdc = bs.get(8);
std::cout << "profile idc: " << (unsigned int) profileIdc << std::endl;
std::cout << "constraint_set0_flag: " << bs.get(1) << std::endl;
std::cout << "constraint_set1_flag: " << bs.get(1) << std::endl;
std::cout << "constraint_set2_flag: " << bs.get(1) << std::endl;
std::cout << "constraint_set3_flag: " << bs.get(1) << std::endl;
std::cout << "constraint_set4_flag: " << bs.get(1) << std::endl;
std::cout << "constraint_set5_flag: " << bs.get(1) << std::endl;
std::cout << "reserved_zero_2bits: " << bs.get(2) << std::endl;
std::cout << "level idc: " << bs.get(8) << std::endl;
std::cout << "seq_parameter_set_id: " << bs.getUExpGolomb() << std::endl;
if (profileIdc == 100 || profileIdc == 110 || profileIdc == 122 || profileIdc == 244 || profileIdc == 44 || profileIdc == 83 || profileIdc == 86 || profileIdc == 118 || profileIdc == 128) {
chroma_format_idc = bs.getUExpGolomb();
std::cout << "chroma_format_idc: " << chroma_format_idc << std::endl;
if (chroma_format_idc == 3) {
std::cout << "separate_colour_plane_flag" << bs.get(1) << std::endl;
}
std::cout << "bit_depth_luma_minus8: " << bs.getUExpGolomb() << std::endl;
std::cout << "bit_depth_chroma_minus8: " << bs.getUExpGolomb() << std::endl;
std::cout << "qpprime_y_zero_transform_bypass_flag: " << bs.get(1) << std::endl;
unsigned int seq_scaling_matrix_present_flag = bs.get(1);
std::cout << "seq_scaling_matrix_present_flag: " << seq_scaling_matrix_present_flag << std::endl;
if (seq_scaling_matrix_present_flag) {
for (unsigned int i = 0; i < ((chroma_format_idc != 3) ? 8 : 12) ; i++) {
unsigned int seq_scaling_list_present_flag = bs.get(1);
std::cout << "seq_scaling_list_present_flag: " << seq_scaling_list_present_flag << std::endl;
DEBUG_MSG(DLVL_DEVEL, "not implemented, ending");
return;
if (seq_scaling_list_present_flag) {
//LevelScale4x4( m, i, j ) = weightScale4x4( i, j ) * normAdjust4x4( m, i, j )
//
if (i < 6) {
//scaling)list(ScalingList4x4[i],16,UseDefaultScalingMatrix4x4Flag[i]
} else {
//scaling)list(ScalingList4x4[i-6],64,UseDefaultScalingMatrix4x4Flag[i-6]
} while (dataPtr < dataLen){
} result[resPtr++] = data[dataPtr++];
}
}
} }
std::cout << "log2_max_frame_num_minus4: " << bs.getUExpGolomb() << std::endl; return result.substr(0, resPtr);
unsigned int pic_order_cnt_type = bs.getUExpGolomb();
std::cout << "pic_order_cnt_type: " << pic_order_cnt_type << std::endl;
if (pic_order_cnt_type == 0) {
std::cout << "log2_max_pic_order_cnt_lsb_minus4: " << bs.getUExpGolomb() << std::endl;
} else if (pic_order_cnt_type == 1) {
DEBUG_MSG(DLVL_DEVEL, "This part of the implementation is incomplete(2), to be continued. If this message is shown, contact developers immediately.");
return;
}
std::cout << "max_num_ref_frames: " << bs.getUExpGolomb() << std::endl;
std::cout << "gaps_in_frame_num_allowed_flag: " << bs.get(1) << std::endl;
std::cout << "pic_width_in_mbs_minus1: " << bs.getUExpGolomb() << std::endl;
std::cout << "pic_height_in_map_units_minus1: " << bs.getUExpGolomb() << std::endl;
unsigned int frame_mbs_only_flag = bs.get(1);
std::cout << "frame_mbs_only_flag: " << frame_mbs_only_flag << std::endl;
if (frame_mbs_only_flag == 0) {
std::cout << "mb_adaptive_frame_field_flag: " << bs.get(1) << std::endl;
}
std::cout << "direct_8x8_inference_flag: " << bs.get(1) << std::endl;
unsigned int frame_cropping_flag = bs.get(1);
std::cout << "frame_cropping_flag: " << frame_cropping_flag << std::endl;
if (frame_cropping_flag != 0) {
std::cout << "frame_crop_left_offset: " << bs.getUExpGolomb() << std::endl;
std::cout << "frame_crop_right_offset: " << bs.getUExpGolomb() << std::endl;
std::cout << "frame_crop_top_offset: " << bs.getUExpGolomb() << std::endl;
std::cout << "frame_crop_bottom_offset: " << bs.getUExpGolomb() << std::endl;
}
unsigned int vui_parameters_present_flag = bs.get(1);
std::cout << "vui_parameters_present_flag: " << vui_parameters_present_flag << std::endl;
if (vui_parameters_present_flag != 0) {
//vuiParameters
unsigned int aspect_ratio_info_present_flag = bs.get(1);
std::cout << "aspect_ratio_info_present_flag: " << aspect_ratio_info_present_flag << std::endl;
if (aspect_ratio_info_present_flag != 0) {
unsigned int aspect_ratio_idc = bs.get(8);
std::cout << "aspect_ratio_idc: " << aspect_ratio_idc << std::endl;
if (aspect_ratio_idc == 255) {
std::cout << "sar_width: " << bs.get(16) << std::endl;
std::cout << "sar_height: " << bs.get(16) << std::endl;
}
}
unsigned int overscan_info_present_flag = bs.get(1);
std::cout << "overscan_info_present_flag: " << overscan_info_present_flag << std::endl;
if (overscan_info_present_flag) {
std::cout << "overscan_appropriate_flag: " << bs.get(1) << std::endl;
}
unsigned int video_signal_type_present_flag = bs.get(1);
std::cout << "video_signal_type_present_flag: " << video_signal_type_present_flag << std::endl;
if (video_signal_type_present_flag) {
std::cout << "video_format: " << bs.get(3) << std::endl;
std::cout << "video_full_range_flag: " << bs.get(1) << std::endl;
unsigned int colour_description_present_flag = bs.get(1);
std::cout << "colour_description_present_flag: " << colour_description_present_flag << std::endl;
if (colour_description_present_flag) {
std::cout << "colour_primaries: " << bs.get(8) << std::endl;
std::cout << "transfer_characteristics: " << bs.get(8) << std::endl;
std::cout << "matrix_coefficients: " << bs.get(8) << std::endl;
}
}
unsigned int chroma_loc_info_present_flag = bs.get(1);
std::cout << "chroma_loc_info_present_flag: " << chroma_loc_info_present_flag << std::endl;
if (chroma_loc_info_present_flag) {
std::cout << "chroma_sample_loc_type_top_field: " << bs.getUExpGolomb() << std::endl;
std::cout << "chroma_sample_loc_type_bottom_field: " << bs.getUExpGolomb() << std::endl;
}
unsigned int timing_info_present_flag = bs.get(1);
std::cout << "timing_info_present_flag: " << timing_info_present_flag << std::endl;
if (timing_info_present_flag) {
std::cout << "num_units_in_tick: " << bs.get(32) << std::endl;
std::cout << "time_scale: " << bs.get(32) << std::endl;
std::cout << "fixed_frame_rate_flag: " << bs.get(1) << std::endl;
}
unsigned int nal_hrd_parameters_present_flag = bs.get(1);
std::cout << "nal_hrd_parameters_present_flag: " << nal_hrd_parameters_present_flag << std::endl;
if (nal_hrd_parameters_present_flag) {
unsigned int cpb_cnt_minus1 = bs.getUExpGolomb();
std::cout << "cpb_cnt_minus1: " << cpb_cnt_minus1 << std::endl;
std::cout << "bit_rate_scale: " << bs.get(4) << std::endl;
std::cout << "cpb_rate_scale: " << bs.get(4) << std::endl;
for (unsigned int ssi = 0; ssi <= cpb_cnt_minus1 ; ssi++) {
std::cout << "bit_rate_value_minus1[" << ssi << "]: " << bs.getUExpGolomb() << std::endl;
std::cout << "cpb_size_value_minus1[" << ssi << "]: " << bs.getUExpGolomb() << std::endl;
std::cout << "cbr_flag[" << ssi << "]: " << bs.get(1) << std::endl;
}
std::cout << "initial_cpb_removal_delay_length_minus1: " << bs.get(5) << std::endl;
std::cout << "cpb_removal_delay_length_minus1: " << bs.get(5) << std::endl;
std::cout << "dpb_output_delay_length_minus1: " << bs.get(5) << std::endl;
std::cout << "time_offset_length: " << bs.get(5) << std::endl;
}
unsigned int vcl_hrd_parameters_present_flag = bs.get(1);
std::cout << "vcl_hrd_parameters_present_flag: " << vcl_hrd_parameters_present_flag << std::endl;
if (vcl_hrd_parameters_present_flag) {
unsigned int cpb_cnt_minus1 = bs.getUExpGolomb();
std::cout << "cpb_cnt_minus1: " << cpb_cnt_minus1 << std::endl;
std::cout << "bit_rate_scale: " << bs.get(4) << std::endl;
std::cout << "cpb_rate_scale: " << bs.get(4) << std::endl;
for (unsigned int ssi = 0; ssi <= cpb_cnt_minus1 ; ssi++) {
std::cout << "bit_rate_value_minus1[" << ssi << "]: " << bs.getUExpGolomb() << std::endl;
std::cout << "cpb_size_value_minus1[" << ssi << "]: " << bs.getUExpGolomb() << std::endl;
std::cout << "cbr_flag[" << ssi << "]: " << bs.get(1) << std::endl;
}
std::cout << "initial_cpb_removal_delay_length_minus1: " << bs.get(5) << std::endl;
std::cout << "cpb_removal_delay_length_minus1: " << bs.get(5) << std::endl;
std::cout << "dpb_output_delay_length_minus1: " << bs.get(5) << std::endl;
std::cout << "time_offset_length: " << bs.get(5) << std::endl;
}
if (nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag) {
std::cout << "low_delay_hrd_flag: " << bs.get(1) << std::endl;
}
std::cout << "pic_struct_present_flag: " << bs.get(1) << std::endl;
unsigned int bitstream_restriction_flag = bs.get(1);
std::cout << "bitstream_restriction_flag: " << bitstream_restriction_flag << std::endl;
if (bitstream_restriction_flag) {
std::cout << "motion_vectors_over_pic_boundaries_flag: " << bs.get(1) << std::endl;
std::cout << "max_bytes_per_pic_denom: " << bs.getUExpGolomb() << std::endl;
std::cout << "max_bits_per_mb_denom: " << bs.getUExpGolomb() << std::endl;
std::cout << "log2_max_mv_length_horizontal: " << bs.getUExpGolomb() << std::endl;
std::cout << "log2_max_mv_length_vertical: " << bs.getUExpGolomb() << std::endl;
std::cout << "num_reorder_frames: " << bs.getUExpGolomb() << std::endl;
std::cout << "max_dec_frame_buffering: " << bs.getUExpGolomb() << std::endl;
}
}
std::cout << std::dec << std::endl;
//DEBUG_MSG(DLVL_DEVEL, "SPS analyser");
} }
///Prints the values of all the fields of a PPS nal unit in a human readable format. unsigned long toAnnexB(const char * data, unsigned long dataSize, char *& result){
///\todo some features, including analyzable matrices, are not implemented. They were never encountered in practice, so far //toAnnexB keeps the same size.
void PPS::analyzePPS() { if (!result){
if (Type() != 8) { result = (char *)malloc(dataSize);
DEBUG_MSG(DLVL_DEVEL, "This is not a PPS, but type %d", Type());
return;
} }
Utils::bitstream bs; int offset = 0;
//put rbsp bytes in mydata while (offset < dataSize){
for (unsigned int i = 1; i < MyData.size(); i++) { //Read unit size
if (i + 2 < MyData.size() && MyData.substr(i, 3) == std::string("\000\000\003", 3)) { unsigned long unitSize = Bit::btohl(data + offset);
bs << MyData.substr(i, 2); //Write annex b header
i += 2; memset(result + offset, 0x00, 3);
} else { result[offset + 3] = 0x01;
bs << MyData.substr(i, 1); //Copy the nal unit
} memcpy(result + offset + 4, data + offset + 4, unitSize);
//Update the offset
offset += 4 + unitSize;
} }
//bs contains all rbsp bytes, now we can analyze them return dataSize;
std::cout << "pic_parameter_set_id: " << bs.getUExpGolomb() << std::endl;
std::cout << "seq_parameter_set_id: " << bs.getUExpGolomb() << std::endl;
std::cout << "entropy_coding_mode_flag: " << bs.get(1) << std::endl;
std::cout << "bottom_field_pic_order_in_frame_present_flag: " << bs.get(1) << std::endl;
unsigned int num_slice_groups_minus1 = bs.getUExpGolomb();
std::cout << "num_slice_groups_minus1: " << num_slice_groups_minus1 << std::endl;
if (num_slice_groups_minus1 > 0) {
unsigned int slice_group_map_type = bs.getUExpGolomb();
std::cout << "slice_group_map_type: " << slice_group_map_type << std::endl;
if (slice_group_map_type == 0) {
for (unsigned int ig = 0; ig <= num_slice_groups_minus1; ig++) {
std::cout << "runlengthminus1[" << ig << "]: " << bs.getUExpGolomb() << std::endl;
}
} else if (slice_group_map_type == 2) {
for (unsigned int ig = 0; ig <= num_slice_groups_minus1; ig++) {
std::cout << "top_left[" << ig << "]: " << bs.getUExpGolomb() << std::endl;
std::cout << "bottom_right[" << ig << "]: " << bs.getUExpGolomb() << std::endl;
}
} else if (slice_group_map_type == 3 || slice_group_map_type == 4 || slice_group_map_type == 5) {
std::cout << "slice_group_change_direction_flag: " << bs.get(1) << std::endl;
std::cout << "slice_group_change_rate_minus1: " << bs.getUExpGolomb() << std::endl;
} else if (slice_group_map_type == 6) {
unsigned int pic_size_in_map_units_minus1 = bs.getUExpGolomb();
std::cout << "pic_size_in_map_units_minus1: " << pic_size_in_map_units_minus1 << std::endl;
for (unsigned int i = 0; i <= pic_size_in_map_units_minus1; i++) {
std::cout << "slice_group_id[" << i << "]: " << bs.get((unsigned int)(ceil(log(num_slice_groups_minus1 + 1) / log(2)))) << std::endl;
}
}
}
std::cout << "num_ref_idx_l0_default_active_minus1: " << bs.getUExpGolomb() << std::endl;
std::cout << "num_ref_idx_l1_default_active_minus1: " << bs.getUExpGolomb() << std::endl;
std::cout << "weighted_pred_flag: " << bs.get(1) << std::endl;
std::cout << "weighted_bipred_idc: " << bs.get(2) << std::endl;
std::cout << "pic_init_qp_minus26: " << bs.getExpGolomb() << std::endl;
std::cout << "pic_init_qs_minus26: " << bs.getExpGolomb() << std::endl;
std::cout << "chroma_qp_index_offset: " << bs.getExpGolomb() << std::endl;
std::cout << "deblocking_filter_control_present_flag: " << bs.get(1) << std::endl;
std::cout << "constrained_intra_pred_flag: " << bs.get(1) << std::endl;
std::cout << "redundant_pic_cnt_present_flag: " << bs.get(1) << std::endl;
//check for more data
if (bs.size() == 0) {
return;
}
unsigned int transform_8x8_mode_flag = bs.get(1);
std::cout << "transform_8x8_mode_flag: " << transform_8x8_mode_flag << std::endl;
unsigned int pic_scaling_matrix_present_flag = bs.get(1);
std::cout << "pic_scaling_matrix_present_flag: " << pic_scaling_matrix_present_flag << std::endl;
if (pic_scaling_matrix_present_flag) {
for (unsigned int i = 0; i < 6 + ((chroma_format_idc != 3) ? 2 : 6)*transform_8x8_mode_flag ; i++) {
unsigned int pic_scaling_list_present_flag = bs.get(1);
std::cout << "pic_scaling_list_present_flag[" << i << "]: " << pic_scaling_list_present_flag << std::endl;
if (pic_scaling_list_present_flag) {
std::cout << "under development, pslpf" << std::endl;
return;
if (i < 6) {
//scaling list(ScalingList4x4[i],16,UseDefaultScalingMatrix4x4Flag[ i ])
} else {
//scaling_list(ScalingList4x4[i],64,UseDefaultScalingMatrix4x4Flag[ i-6 ])
}
}
}
}
std::cout << "second_chroma_qp_index_offset: " << bs.getExpGolomb() << std::endl;
} }
unsigned long fromAnnexB(const char * data, unsigned long dataSize, char *& result){
const char * lastCheck = data + dataSize - 3;
if (!result){
FAIL_MSG("No output buffer given to FromAnnexB");
return 0;
}
int offset = 0;
int newOffset = 0;
while (offset < dataSize){
const char * begin = data + offset;
while ( begin < lastCheck && !(!begin[0] && !begin[1] && begin[2] == 0x01)){
begin++;
if (begin < lastCheck && begin[0]){
begin++;
}
}
begin += 3;//Initialize begin after the first 0x000001 pattern.
if (begin > data + dataSize){
offset = dataSize;
continue;
}
const char * end = (const char*)memmem(begin, dataSize - (begin - data), "\000\000\001", 3);
if (!end) {
end = data + dataSize;
}
//Check for 4-byte lead in's. Yes, we access -1 here
if (end > begin && (end - data) != dataSize && end[-1] == 0x00){
end--;
}
unsigned int nalSize = end - begin;
Bit::htobl(result + newOffset, nalSize);
memcpy(result + newOffset + 4, begin, nalSize);
newOffset += 4 + nalSize;
offset = end - data;
}
return newOffset;
}
} }

View file

@ -1,45 +1,19 @@
#pragma once
#include <deque>
#include <string> #include <string>
#include <cstdio> #include <cstdio>
#include <deque>
#include "dtsc.h"
namespace h264 { namespace nalu {
struct nalData {
///Struct containing pre-calculated metadata of an SPS nal unit. Width and height in pixels, fps in Hz unsigned char nalType;
struct SPSMeta { unsigned long nalSize;
unsigned int width;
unsigned int height;
double fps;
}; };
///Class for analyzing generic nal units std::deque<int> parseNalSizes(DTSC::Packet & pack);
class NAL { std::string removeEmulationPrevention(const std::string & data);
public:
NAL();
NAL(std::string & InputData);
bool ReadData(std::string & InputData, bool raw = false);
std::string AnnexB(bool LongIntro = false);
std::string SizePrepended();
int Type();
std::string getData();
protected:
unsigned int chroma_format_idc;///<the value of chroma_format_idc
std::string MyData;///<The h264 nal unit data
};
//NAL class
///Special instance of NAL class for analyzing SPS nal units unsigned long toAnnexB(const char * data, unsigned long dataSize, char *& result);
class SPS: public NAL { unsigned long fromAnnexB(const char * data, unsigned long dataSize, char *& result);
public: }
SPS(): NAL() {};
SPS(std::string & InputData, bool raw = false);
SPSMeta getCharacteristics();
void analyzeSPS();
};
///Special instance of NAL class for analyzing PPS nal units
class PPS: public NAL {
public:
PPS(): NAL() {};
PPS(std::string & InputData): NAL(InputData) {};
void analyzePPS();
};
}//ns h264

View file

@ -808,15 +808,17 @@ namespace IPC {
break; break;
default: default:
#ifndef NOCRASHCHECK #ifndef NOCRASHCHECK
if(*counter > 10 && *counter < 126 ){ if (tmpPID){
if(*counter < 30){ if(*counter > 10 && *counter < 126 ){
if (*counter > 15){ if(*counter < 30){
WARN_MSG("Process %d is unresponsive",tmpPID); if (*counter > 15){
WARN_MSG("Process %d is unresponsive",tmpPID);
}
Util::Procs::Stop(tmpPID); //soft kill
} else {
ERROR_MSG("Killing unresponsive process %d", tmpPID);
Util::Procs::Murder(tmpPID); //improved kill
} }
Util::Procs::Stop(tmpPID); //soft kill
} else {
ERROR_MSG("Killing unresponsive process %d", tmpPID);
Util::Procs::Murder(tmpPID); //improved kill
} }
} }
#endif #endif

View file

@ -1167,6 +1167,13 @@ int Socket::UDPConnection::bind(int port) {
/// \return True if a packet was received, false otherwise. /// \return True if a packet was received, false otherwise.
bool Socket::UDPConnection::Receive() { bool Socket::UDPConnection::Receive() {
int r = recvfrom(sock, data, data_size, MSG_PEEK | MSG_TRUNC, 0, 0); int r = recvfrom(sock, data, data_size, MSG_PEEK | MSG_TRUNC, 0, 0);
if (r == -1){
if (errno != EAGAIN){
INFO_MSG("Found an error: %d (%s)", errno, strerror(errno));
}
data_len = 0;
return false;
}
if (data_size < (unsigned int)r) { if (data_size < (unsigned int)r) {
data = (char *)realloc(data, r); data = (char *)realloc(data, r);
if (data) { if (data) {

View file

@ -30,13 +30,13 @@ namespace TS {
/// \param Data The data to be read into the packet. /// \param Data The data to be read into the packet.
/// \return true if it was possible to read in a full packet, false otherwise. /// \return true if it was possible to read in a full packet, false otherwise.
bool Packet::FromFile(FILE * data) { bool Packet::FromFile(FILE * data) {
long long int pos = ftell(data); long long int bPos = ftell(data);
if (!fread((void *)strBuf, 188, 1, data)) { if (!fread((void *)strBuf, 188, 1, data)) {
return false; return false;
} }
pos=188; pos=188;
if (strBuf[0] != 0x47){ if (strBuf[0] != 0x47){
INFO_MSG("Failed to read a good packet on pos %lld", pos); HIGH_MSG("Failed to read a good packet on pos %lld", bPos);
return false; return false;
} }
return true; return true;
@ -285,7 +285,7 @@ namespace TS {
if (!(i % 32)){ if (!(i % 32)){
output << std::endl << std::string(indent + 4, ' '); output << std::endl << std::string(indent + 4, ' ');
} }
output << std::hex << std::setw(2) << std::setfill('0') << (unsigned int)(strBuf+pos)[i] << " "; output << std::hex << std::setw(2) << std::setfill('0') << (unsigned int)(strBuf+188-size)[i] << " ";
if ((i % 4) == 3){ if ((i % 4) == 3){
output << " "; output << " ";
} }
@ -295,10 +295,6 @@ namespace TS {
return output.str(); return output.str();
} }
/*
char * Packet::dataPointer(){
return (char*)strBuf+pos;//.data() + 188 - dataSize();
}*/
unsigned int Packet::getDataSize() const{ unsigned int Packet::getDataSize() const{
return 184 - ((getAdaptationField() > 1) ? getAdaptationFieldLen() + 1 : 0); return 184 - ((getAdaptationField() > 1) ? getAdaptationFieldLen() + 1 : 0);