diff --git a/util/dtsc.cpp b/util/dtsc.cpp index a5eb05e3..fd0b6a7e 100644 --- a/util/dtsc.cpp +++ b/util/dtsc.cpp @@ -66,8 +66,9 @@ bool DTSC::Stream::parsePacket(std::string & buffer){ return true; } #if DEBUG >= 2 - std::cerr << "Error: Invalid DTMI data! I *will* get stuck!" << std::endl; + std::cerr << "Error: Invalid DTMI data: " << buffer.substr(0, 4) << std::endl; #endif + buffer.erase(0, 1); } return false; } diff --git a/util/tinythread.cpp b/util/tinythread.cpp new file mode 100644 index 00000000..eb2dce0e --- /dev/null +++ b/util/tinythread.cpp @@ -0,0 +1,287 @@ +/* +Copyright (c) 2010 Marcus Geelnard + +This software is provided 'as-is', without any express or implied +warranty. In no event will the authors be held liable for any damages +arising from the use of this software. + +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it +freely, subject to the following restrictions: + + 1. The origin of this software must not be misrepresented; you must not + claim that you wrote the original software. If you use this software + in a product, an acknowledgment in the product documentation would be + appreciated but is not required. + + 2. Altered source versions must be plainly marked as such, and must not be + misrepresented as being the original software. + + 3. This notice may not be removed or altered from any source + distribution. +*/ + +#include +#include "tinythread.h" + +#if defined(_TTHREAD_POSIX_) + #include + #include +#elif defined(_TTHREAD_WIN32_) + #include +#endif + + +namespace tthread { + +//------------------------------------------------------------------------------ +// condition_variable +//------------------------------------------------------------------------------ +// NOTE 1: The Win32 implementation of the condition_variable class is based on +// the corresponding implementation in GLFW, which in turn is based on a +// description by Douglas C. Schmidt and Irfan Pyarali: +// http://www.cs.wustl.edu/~schmidt/win32-cv-1.html +// +// NOTE 2: Windows Vista actually has native support for condition variables +// (InitializeConditionVariable, WakeConditionVariable, etc), but we want to +// be portable with pre-Vista Windows versions, so TinyThread++ does not use +// Vista condition variables. +//------------------------------------------------------------------------------ + +#if defined(_TTHREAD_WIN32_) + #define _CONDITION_EVENT_ONE 0 + #define _CONDITION_EVENT_ALL 1 +#endif + +#if defined(_TTHREAD_WIN32_) +condition_variable::condition_variable() : mWaitersCount(0) +{ + mEvents[_CONDITION_EVENT_ONE] = CreateEvent(NULL, FALSE, FALSE, NULL); + mEvents[_CONDITION_EVENT_ALL] = CreateEvent(NULL, TRUE, FALSE, NULL); + InitializeCriticalSection(&mWaitersCountLock); +} +#endif + +#if defined(_TTHREAD_WIN32_) +condition_variable::~condition_variable() +{ + CloseHandle(mEvents[_CONDITION_EVENT_ONE]); + CloseHandle(mEvents[_CONDITION_EVENT_ALL]); + DeleteCriticalSection(&mWaitersCountLock); +} +#endif + +#if defined(_TTHREAD_WIN32_) +void condition_variable::_wait() +{ + // Wait for either event to become signaled due to notify_one() or + // notify_all() being called + int result = WaitForMultipleObjects(2, mEvents, FALSE, INFINITE); + + // Check if we are the last waiter + EnterCriticalSection(&mWaitersCountLock); + -- mWaitersCount; + bool lastWaiter = (result == (WAIT_OBJECT_0 + _CONDITION_EVENT_ALL)) && + (mWaitersCount == 0); + LeaveCriticalSection(&mWaitersCountLock); + + // If we are the last waiter to be notified to stop waiting, reset the event + if(lastWaiter) + ResetEvent(mEvents[_CONDITION_EVENT_ALL]); +} +#endif + +#if defined(_TTHREAD_WIN32_) +void condition_variable::notify_one() +{ + // Are there any waiters? + EnterCriticalSection(&mWaitersCountLock); + bool haveWaiters = (mWaitersCount > 0); + LeaveCriticalSection(&mWaitersCountLock); + + // If we have any waiting threads, send them a signal + if(haveWaiters) + SetEvent(mEvents[_CONDITION_EVENT_ONE]); +} +#endif + +#if defined(_TTHREAD_WIN32_) +void condition_variable::notify_all() +{ + // Are there any waiters? + EnterCriticalSection(&mWaitersCountLock); + bool haveWaiters = (mWaitersCount > 0); + LeaveCriticalSection(&mWaitersCountLock); + + // If we have any waiting threads, send them a signal + if(haveWaiters) + SetEvent(mEvents[_CONDITION_EVENT_ALL]); +} +#endif + + +//------------------------------------------------------------------------------ +// POSIX pthread_t to unique thread::id mapping logic. +// Note: Here we use a global thread safe std::map to convert instances of +// pthread_t to small thread identifier numbers (unique within one process). +// This method should be portable across different POSIX implementations. +//------------------------------------------------------------------------------ + +#if defined(_TTHREAD_POSIX_) +static thread::id _pthread_t_to_ID(const pthread_t &aHandle) +{ + static mutex idMapLock; + static std::map idMap; + static unsigned long int idCount(1); + + lock_guard guard(idMapLock); + if(idMap.find(aHandle) == idMap.end()) + idMap[aHandle] = idCount ++; + return thread::id(idMap[aHandle]); +} +#endif // _TTHREAD_POSIX_ + + +//------------------------------------------------------------------------------ +// thread +//------------------------------------------------------------------------------ + +/// Information to pass to the new thread (what to run). +struct _thread_start_info { + void (*mFunction)(void *); ///< Pointer to the function to be executed. + void * mArg; ///< Function argument for the thread function. + thread * mThread; ///< Pointer to the thread object. +}; + +// Thread wrapper function. +#if defined(_TTHREAD_WIN32_) +unsigned WINAPI thread::wrapper_function(void * aArg) +#elif defined(_TTHREAD_POSIX_) +void * thread::wrapper_function(void * aArg) +#endif +{ + // Get thread startup information + _thread_start_info * ti = (_thread_start_info *) aArg; + + try + { + // Call the actual client thread function + ti->mFunction(ti->mArg); + } + catch(...) + { + // Uncaught exceptions will terminate the application (default behavior + // according to the C++0x draft) + std::terminate(); + } + + // The thread is no longer executing + lock_guard guard(ti->mThread->mDataMutex); + ti->mThread->mNotAThread = true; + + // The thread is responsible for freeing the startup information + delete ti; + + return 0; +} + +thread::thread(void (*aFunction)(void *), void * aArg) +{ + // Serialize access to this thread structure + lock_guard guard(mDataMutex); + + // Fill out the thread startup information (passed to the thread wrapper, + // which will eventually free it) + _thread_start_info * ti = new _thread_start_info; + ti->mFunction = aFunction; + ti->mArg = aArg; + ti->mThread = this; + + // The thread is now alive + mNotAThread = false; + + // Create the thread +#if defined(_TTHREAD_WIN32_) + mHandle = (HANDLE) _beginthreadex(0, 0, wrapper_function, (void *) ti, 0, &mWin32ThreadID); +#elif defined(_TTHREAD_POSIX_) + if(pthread_create(&mHandle, NULL, wrapper_function, (void *) ti) != 0) + mHandle = 0; +#endif + + // Did we fail to create the thread? + if(!mHandle) + { + mNotAThread = true; + delete ti; + } +} + +thread::~thread() +{ + if(joinable()) + std::terminate(); +} + +void thread::join() +{ + if(joinable()) + { +#if defined(_TTHREAD_WIN32_) + WaitForSingleObject(mHandle, INFINITE); +#elif defined(_TTHREAD_POSIX_) + pthread_join(mHandle, NULL); +#endif + } +} + +bool thread::joinable() const +{ + mDataMutex.lock(); + bool result = !mNotAThread; + mDataMutex.unlock(); + return result; +} + +thread::id thread::get_id() const +{ + if(!joinable()) + return id(); +#if defined(_TTHREAD_WIN32_) + return id((unsigned long int) mWin32ThreadID); +#elif defined(_TTHREAD_POSIX_) + return _pthread_t_to_ID(mHandle); +#endif +} + +unsigned thread::hardware_concurrency() +{ +#if defined(_TTHREAD_WIN32_) + SYSTEM_INFO si; + GetSystemInfo(&si); + return (int) si.dwNumberOfProcessors; +#elif defined(_SC_NPROCESSORS_ONLN) + return (int) sysconf(_SC_NPROCESSORS_ONLN); +#elif defined(_SC_NPROC_ONLN) + return (int) sysconf(_SC_NPROC_ONLN); +#else + // The standard requires this function to return zero if the number of + // hardware cores could not be determined. + return 0; +#endif +} + + +//------------------------------------------------------------------------------ +// this_thread +//------------------------------------------------------------------------------ + +thread::id this_thread::get_id() +{ +#if defined(_TTHREAD_WIN32_) + return thread::id((unsigned long int) GetCurrentThreadId()); +#elif defined(_TTHREAD_POSIX_) + return _pthread_t_to_ID(pthread_self()); +#endif +} + +} diff --git a/util/tinythread.h b/util/tinythread.h new file mode 100644 index 00000000..723370cf --- /dev/null +++ b/util/tinythread.h @@ -0,0 +1,696 @@ +/* +Copyright (c) 2010 Marcus Geelnard + +This software is provided 'as-is', without any express or implied +warranty. In no event will the authors be held liable for any damages +arising from the use of this software. + +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it +freely, subject to the following restrictions: + + 1. The origin of this software must not be misrepresented; you must not + claim that you wrote the original software. If you use this software + in a product, an acknowledgment in the product documentation would be + appreciated but is not required. + + 2. Altered source versions must be plainly marked as such, and must not be + misrepresented as being the original software. + + 3. This notice may not be removed or altered from any source + distribution. +*/ + +#ifndef _TINYTHREAD_H_ +#define _TINYTHREAD_H_ + +/// @file +/// @mainpage TinyThread++ API Reference +/// +/// @section intro_sec Introduction +/// TinyThread++ is a minimal, portable implementation of basic threading +/// classes for C++. +/// +/// They closely mimic the functionality and naming of the C++0x standard, and +/// should be easily replaceable with the corresponding std:: variants. +/// +/// @section port_sec Portability +/// The Win32 variant uses the native Win32 API for implementing the thread +/// classes, while for other systems, the POSIX threads API (pthread) is used. +/// +/// @section class_sec Classes +/// In order to mimic the threading API of the C++0x standard, subsets of +/// several classes are provided. The fundamental classes are: +/// @li tthread::thread +/// @li tthread::mutex +/// @li tthread::recursive_mutex +/// @li tthread::condition_variable +/// @li tthread::lock_guard +/// @li tthread::fast_mutex +/// +/// @section misc_sec Miscellaneous +/// The following special keywords are available: #thread_local. +/// +/// For more detailed information (including additional classes), browse the +/// different sections of this documentation. A good place to start is: +/// tinythread.h. + +// Which platform are we on? +#if !defined(_TTHREAD_PLATFORM_DEFINED_) + #if defined(_WIN32) || defined(__WIN32__) || defined(__WINDOWS__) + #define _TTHREAD_WIN32_ + #else + #define _TTHREAD_POSIX_ + #endif + #define _TTHREAD_PLATFORM_DEFINED_ +#endif + +// Platform specific includes +#if defined(_TTHREAD_WIN32_) + #include +#else + #include + #include + #include + #include +#endif + +// Generic includes +#include + +/// TinyThread++ version (major number). +#define TINYTHREAD_VERSION_MAJOR 1 +/// TinyThread++ version (minor number). +#define TINYTHREAD_VERSION_MINOR 0 +/// TinyThread++ version (full version). +#define TINYTHREAD_VERSION (TINYTHREAD_VERSION_MAJOR * 100 + TINYTHREAD_VERSION_MINOR) + +// Do we have a fully featured C++0x compiler? +#if (__cplusplus > 199711L) || (defined(__STDCXX_VERSION__) && (__STDCXX_VERSION__ >= 201001L)) + #define _TTHREAD_CPP0X_ +#endif + +// ...at least partial C++0x? +#if defined(_TTHREAD_CPP0X_) || defined(__GXX_EXPERIMENTAL_CXX0X__) || defined(__GXX_EXPERIMENTAL_CPP0X__) + #define _TTHREAD_CPP0X_PARTIAL_ +#endif + +// Macro for disabling assignments of objects. +#ifdef _TTHREAD_CPP0X_PARTIAL_ + #define _TTHREAD_DISABLE_ASSIGNMENT(name) \ + name(const name&) = delete; \ + name& operator=(const name&) = delete; +#else + #define _TTHREAD_DISABLE_ASSIGNMENT(name) \ + name(const name&); \ + name& operator=(const name&); +#endif + +/// @def thread_local +/// Thread local storage keyword. +/// A variable that is declared with the \c thread_local keyword makes the +/// value of the variable local to each thread (known as thread-local storage, +/// or TLS). Example usage: +/// @code +/// // This variable is local to each thread. +/// thread_local int variable; +/// @endcode +/// @note The \c thread_local keyword is a macro that maps to the corresponding +/// compiler directive (e.g. \c __declspec(thread)). While the C++0x standard +/// allows for non-trivial types (e.g. classes with constructors and +/// destructors) to be declared with the \c thread_local keyword, most pre-C++0x +/// compilers only allow for trivial types (e.g. \c int). So, to guarantee +/// portable code, only use trivial types for thread local storage. +/// @note This directive is currently not supported on Mac OS X (it will give +/// a compiler error), since compile-time TLS is not supported in the Mac OS X +/// executable format. Also, some older versions of MinGW (before GCC 4.x) do +/// not support this directive. +/// @hideinitializer + +#if !defined(_TTHREAD_CPP0X_) && !defined(thread_local) + #if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_CC) || defined(__IBMCPP__) + #define thread_local __thread + #else + #define thread_local __declspec(thread) + #endif +#endif + + +/// Main name space for TinyThread++. +/// This namespace is more or less equivalent to the \c std namespace for the +/// C++0x thread classes. For instance, the tthread::mutex class corresponds to +/// the std::mutex class. +namespace tthread { + +/// Mutex class. +/// This is a mutual exclusion object for synchronizing access to shared +/// memory areas for several threads. The mutex is non-recursive (i.e. a +/// program may deadlock if the thread that owns a mutex object calls lock() +/// on that object). +/// @see recursive_mutex +class mutex { + public: + /// Constructor. + mutex() +#if defined(_TTHREAD_WIN32_) + : mAlreadyLocked(false) +#endif + { +#if defined(_TTHREAD_WIN32_) + InitializeCriticalSection(&mHandle); +#else + pthread_mutex_init(&mHandle, NULL); +#endif + } + + /// Destructor. + ~mutex() + { +#if defined(_TTHREAD_WIN32_) + DeleteCriticalSection(&mHandle); +#else + pthread_mutex_destroy(&mHandle); +#endif + } + + /// Lock the mutex. + /// The method will block the calling thread until a lock on the mutex can + /// be obtained. The mutex remains locked until \c unlock() is called. + /// @see lock_guard + inline void lock() + { +#if defined(_TTHREAD_WIN32_) + EnterCriticalSection(&mHandle); + while(mAlreadyLocked) Sleep(1000); // Simulate deadlock... + mAlreadyLocked = true; +#else + pthread_mutex_lock(&mHandle); +#endif + } + + /// Try to lock the mutex. + /// The method will try to lock the mutex. If it fails, the function will + /// return immediately (non-blocking). + /// @return \c true if the lock was acquired, or \c false if the lock could + /// not be acquired. + inline bool try_lock() + { +#if defined(_TTHREAD_WIN32_) + bool ret = (TryEnterCriticalSection(&mHandle) ? true : false); + if(ret && mAlreadyLocked) + { + LeaveCriticalSection(&mHandle); + ret = false; + } + return ret; +#else + return (pthread_mutex_trylock(&mHandle) == 0) ? true : false; +#endif + } + + /// Unlock the mutex. + /// If any threads are waiting for the lock on this mutex, one of them will + /// be unblocked. + inline void unlock() + { +#if defined(_TTHREAD_WIN32_) + mAlreadyLocked = false; + LeaveCriticalSection(&mHandle); +#else + pthread_mutex_unlock(&mHandle); +#endif + } + + _TTHREAD_DISABLE_ASSIGNMENT(mutex) + + private: +#if defined(_TTHREAD_WIN32_) + CRITICAL_SECTION mHandle; + bool mAlreadyLocked; +#else + pthread_mutex_t mHandle; +#endif + + friend class condition_variable; +}; + +/// Recursive mutex class. +/// This is a mutual exclusion object for synchronizing access to shared +/// memory areas for several threads. The mutex is recursive (i.e. a thread +/// may lock the mutex several times, as long as it unlocks the mutex the same +/// number of times). +/// @see mutex +class recursive_mutex { + public: + /// Constructor. + recursive_mutex() + { +#if defined(_TTHREAD_WIN32_) + InitializeCriticalSection(&mHandle); +#else + pthread_mutexattr_t attr; + pthread_mutexattr_init(&attr); + pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); + pthread_mutex_init(&mHandle, &attr); +#endif + } + + /// Destructor. + ~recursive_mutex() + { +#if defined(_TTHREAD_WIN32_) + DeleteCriticalSection(&mHandle); +#else + pthread_mutex_destroy(&mHandle); +#endif + } + + /// Lock the mutex. + /// The method will block the calling thread until a lock on the mutex can + /// be obtained. The mutex remains locked until \c unlock() is called. + /// @see lock_guard + inline void lock() + { +#if defined(_TTHREAD_WIN32_) + EnterCriticalSection(&mHandle); +#else + pthread_mutex_lock(&mHandle); +#endif + } + + /// Try to lock the mutex. + /// The method will try to lock the mutex. If it fails, the function will + /// return immediately (non-blocking). + /// @return \c true if the lock was acquired, or \c false if the lock could + /// not be acquired. + inline bool try_lock() + { +#if defined(_TTHREAD_WIN32_) + return TryEnterCriticalSection(&mHandle) ? true : false; +#else + return (pthread_mutex_trylock(&mHandle) == 0) ? true : false; +#endif + } + + /// Unlock the mutex. + /// If any threads are waiting for the lock on this mutex, one of them will + /// be unblocked. + inline void unlock() + { +#if defined(_TTHREAD_WIN32_) + LeaveCriticalSection(&mHandle); +#else + pthread_mutex_unlock(&mHandle); +#endif + } + + _TTHREAD_DISABLE_ASSIGNMENT(recursive_mutex) + + private: +#if defined(_TTHREAD_WIN32_) + CRITICAL_SECTION mHandle; +#else + pthread_mutex_t mHandle; +#endif + + friend class condition_variable; +}; + +/// Lock guard class. +/// The constructor locks the mutex, and the destructor unlocks the mutex, so +/// the mutex will automatically be unlocked when the lock guard goes out of +/// scope. Example usage: +/// @code +/// mutex m; +/// int counter; +/// +/// void increment() +/// { +/// lock_guard guard(m); +/// ++ counter; +/// } +/// @endcode + +template +class lock_guard { + public: + typedef T mutex_type; + + lock_guard() : mMutex(0) {} + + /// The constructor locks the mutex. + explicit lock_guard(mutex_type &aMutex) + { + mMutex = &aMutex; + mMutex->lock(); + } + + /// The destructor unlocks the mutex. + ~lock_guard() + { + if(mMutex) + mMutex->unlock(); + } + + private: + mutex_type * mMutex; +}; + +/// Condition variable class. +/// This is a signalling object for synchronizing the execution flow for +/// several threads. Example usage: +/// @code +/// // Shared data and associated mutex and condition variable objects +/// int count; +/// mutex m; +/// condition_variable cond; +/// +/// // Wait for the counter to reach a certain number +/// void wait_counter(int targetCount) +/// { +/// lock_guard guard(m); +/// while(count < targetCount) +/// cond.wait(m); +/// } +/// +/// // Increment the counter, and notify waiting threads +/// void increment() +/// { +/// lock_guard guard(m); +/// ++ count; +/// cond.notify_all(); +/// } +/// @endcode +class condition_variable { + public: + /// Constructor. +#if defined(_TTHREAD_WIN32_) + condition_variable(); +#else + condition_variable() + { + pthread_cond_init(&mHandle, NULL); + } +#endif + + /// Destructor. +#if defined(_TTHREAD_WIN32_) + ~condition_variable(); +#else + ~condition_variable() + { + pthread_cond_destroy(&mHandle); + } +#endif + + /// Wait for the condition. + /// The function will block the calling thread until the condition variable + /// is woken by \c notify_one(), \c notify_all() or a spurious wake up. + /// @param[in] aMutex A mutex that will be unlocked when the wait operation + /// starts, an locked again as soon as the wait operation is finished. + template + inline void wait(_mutexT &aMutex) + { +#if defined(_TTHREAD_WIN32_) + // Increment number of waiters + EnterCriticalSection(&mWaitersCountLock); + ++ mWaitersCount; + LeaveCriticalSection(&mWaitersCountLock); + + // Release the mutex while waiting for the condition (will decrease + // the number of waiters when done)... + aMutex.unlock(); + _wait(); + aMutex.lock(); +#else + pthread_cond_wait(&mHandle, &aMutex.mHandle); +#endif + } + + /// Notify one thread that is waiting for the condition. + /// If at least one thread is blocked waiting for this condition variable, + /// one will be woken up. + /// @note Only threads that started waiting prior to this call will be + /// woken up. +#if defined(_TTHREAD_WIN32_) + void notify_one(); +#else + inline void notify_one() + { + pthread_cond_signal(&mHandle); + } +#endif + + /// Notify all threads that are waiting for the condition. + /// All threads that are blocked waiting for this condition variable will + /// be woken up. + /// @note Only threads that started waiting prior to this call will be + /// woken up. +#if defined(_TTHREAD_WIN32_) + void notify_all(); +#else + inline void notify_all() + { + pthread_cond_broadcast(&mHandle); + } +#endif + + _TTHREAD_DISABLE_ASSIGNMENT(condition_variable) + + private: +#if defined(_TTHREAD_WIN32_) + void _wait(); + HANDLE mEvents[2]; ///< Signal and broadcast event HANDLEs. + unsigned int mWaitersCount; ///< Count of the number of waiters. + CRITICAL_SECTION mWaitersCountLock; ///< Serialize access to mWaitersCount. +#else + pthread_cond_t mHandle; +#endif +}; + + +/// Thread class. +class thread { + public: +#if defined(_TTHREAD_WIN32_) + typedef HANDLE native_handle_type; +#else + typedef pthread_t native_handle_type; +#endif + + class id; + + /// Default constructor. + /// Construct a \c thread object without an associated thread of execution + /// (i.e. non-joinable). + thread() : mHandle(0), mNotAThread(true) +#if defined(_TTHREAD_WIN32_) + , mWin32ThreadID(0) +#endif + {} + + /// Thread starting constructor. + /// Construct a \c thread object with a new thread of execution. + /// @param[in] aFunction A function pointer to a function of type: + /// void fun(void * arg) + /// @param[in] aArg Argument to the thread function. + /// @note This constructor is not fully compatible with the standard C++ + /// thread class. It is more similar to the pthread_create() (POSIX) and + /// CreateThread() (Windows) functions. + thread(void (*aFunction)(void *), void * aArg); + + /// Destructor. + /// @note If the thread is joinable upon destruction, \c std::terminate() + /// will be called, which terminates the process. It is always wise to do + /// \c join() before deleting a thread object. + ~thread(); + + /// Wait for the thread to finish (join execution flows). + void join(); + + /// Check if the thread is joinable. + /// A thread object is joinable if it has an associated thread of execution. + bool joinable() const; + + /// Return the thread ID of a thread object. + id get_id() const; + + /// Get the native handle for this thread. + /// @note Under Windows, this is a \c HANDLE, and under POSIX systems, this + /// is a \c pthread_t. + inline native_handle_type native_handle() + { + return mHandle; + } + + /// Determine the number of threads which can possibly execute concurrently. + /// This function is useful for determining the optimal number of threads to + /// use for a task. + /// @return The number of hardware thread contexts in the system. + /// @note If this value is not defined, the function returns zero (0). + static unsigned hardware_concurrency(); + + _TTHREAD_DISABLE_ASSIGNMENT(thread) + + private: + native_handle_type mHandle; ///< Thread handle. + mutable mutex mDataMutex; ///< Serializer for access to the thread private data. + bool mNotAThread; ///< True if this object is not a thread of execution. +#if defined(_TTHREAD_WIN32_) + unsigned int mWin32ThreadID; ///< Unique thread ID (filled out by _beginthreadex). +#endif + + // This is the internal thread wrapper function. +#if defined(_TTHREAD_WIN32_) + static unsigned WINAPI wrapper_function(void * aArg); +#else + static void * wrapper_function(void * aArg); +#endif +}; + +/// Thread ID. +/// The thread ID is a unique identifier for each thread. +/// @see thread::get_id() +class thread::id { + public: + /// Default constructor. + /// The default constructed ID is that of thread without a thread of + /// execution. + id() : mId(0) {}; + + id(unsigned long int aId) : mId(aId) {}; + + id(const id& aId) : mId(aId.mId) {}; + + inline id & operator=(const id &aId) + { + mId = aId.mId; + return *this; + } + + inline friend bool operator==(const id &aId1, const id &aId2) + { + return (aId1.mId == aId2.mId); + } + + inline friend bool operator!=(const id &aId1, const id &aId2) + { + return (aId1.mId != aId2.mId); + } + + inline friend bool operator<=(const id &aId1, const id &aId2) + { + return (aId1.mId <= aId2.mId); + } + + inline friend bool operator<(const id &aId1, const id &aId2) + { + return (aId1.mId < aId2.mId); + } + + inline friend bool operator>=(const id &aId1, const id &aId2) + { + return (aId1.mId >= aId2.mId); + } + + inline friend bool operator>(const id &aId1, const id &aId2) + { + return (aId1.mId > aId2.mId); + } + + inline friend std::ostream& operator <<(std::ostream &os, const id &obj) + { + os << obj.mId; + return os; + } + + private: + unsigned long int mId; +}; + + +// Related to - minimal to be able to support chrono. +typedef long long __intmax_t; + +/// Minimal implementation of the \c ratio class. This class provides enough +/// functionality to implement some basic \c chrono classes. +template <__intmax_t N, __intmax_t D = 1> class ratio { + public: + static double _as_double() { return double(N) / double(D); } +}; + +/// Minimal implementation of the \c chrono namespace. +/// The \c chrono namespace provides types for specifying time intervals. +namespace chrono { + /// Duration template class. This class provides enough functionality to + /// implement \c this_thread::sleep_for(). + template > class duration { + private: + _Rep rep_; + public: + typedef _Rep rep; + typedef _Period period; + + /// Construct a duration object with the given duration. + template + explicit duration(const _Rep2& r) : rep_(r) {}; + + /// Return the value of the duration object. + rep count() const + { + return rep_; + } + }; + + // Standard duration types. + typedef duration<__intmax_t, ratio<1, 1000000000> > nanoseconds; ///< Duration with the unit nanoseconds. + typedef duration<__intmax_t, ratio<1, 1000000> > microseconds; ///< Duration with the unit microseconds. + typedef duration<__intmax_t, ratio<1, 1000> > milliseconds; ///< Duration with the unit milliseconds. + typedef duration<__intmax_t> seconds; ///< Duration with the unit seconds. + typedef duration<__intmax_t, ratio<60> > minutes; ///< Duration with the unit minutes. + typedef duration<__intmax_t, ratio<3600> > hours; ///< Duration with the unit hours. +} + +/// The namespace \c this_thread provides methods for dealing with the +/// calling thread. +namespace this_thread { + /// Return the thread ID of the calling thread. + thread::id get_id(); + + /// Yield execution to another thread. + /// Offers the operating system the opportunity to schedule another thread + /// that is ready to run on the current processor. + inline void yield() + { +#if defined(_TTHREAD_WIN32_) + Sleep(0); +#else + sched_yield(); +#endif + } + + /// Blocks the calling thread for a period of time. + /// @param[in] aTime Minimum time to put the thread to sleep. + /// Example usage: + /// @code + /// // Sleep for 100 milliseconds + /// this_thread::sleep_for(chrono::milliseconds(100)); + /// @endcode + /// @note Supported duration types are: nanoseconds, microseconds, + /// milliseconds, seconds, minutes and hours. + template void sleep_for(const chrono::duration<_Rep, _Period>& aTime) + { +#if defined(_TTHREAD_WIN32_) + Sleep(int(double(aTime.count()) * (1000.0 * _Period::_as_double()) + 0.5)); +#else + usleep(int(double(aTime.count()) * (1000000.0 * _Period::_as_double()) + 0.5)); +#endif + } +} + +} + +// Define/macro cleanup +#undef _TTHREAD_DISABLE_ASSIGNMENT + +#endif // _TINYTHREAD_H_