#include //for malloc and free #include //for memcpy #include //for htonl and friends #include "mp4.h" #include "json.h" /// Contains all MP4 format related code. namespace MP4{ /// Creates a new box, optionally using the indicated pointer for storage. /// If manage is set to true, the pointer will be realloc'ed when the box needs to be resized. /// If the datapointer is NULL, manage is assumed to be true even if explicitly given as false. /// If managed, the pointer will be free'd upon destruction. Box::Box(char * datapointer, bool manage){ data = datapointer; managed = manage; if (data == 0){ clear(); }else{ data_size = ntohl(((int*)data)[0]); } } /// If managed, this will free the data pointer. Box::~Box(){ if (managed && data != 0){ free(data); data = 0; } } /// Returns the values at byte positions 4 through 7. std::string Box::getType() { return std::string(data+4,4); } /// Returns true if the given 4-byte boxtype is equal to the values at byte positions 4 through 7. bool Box::isType( char* boxType ) { return !memcmp(boxType, data + 4, 4); } /// Reads out a whole box (if possible) from newData, copying to the internal data storage and removing from the input string. /// \returns True on success, false otherwise. bool Box::read(std::string & newData){ if (!managed){return false;} if (newData.size() > 4){ size_t size = ntohl( ((int*)newData.c_str())[0] ); if (newData.size() >= size){ void * ret = malloc(size); if (!ret){return false;} free(data); data = ret; memcpy(data, newData.c_str(), size); newData.erase( 0, size ); return true; } } return false; } /// Returns the total boxed size of this box, including the header. size_t Box::boxedSize() { return ntohl(((int*)data)[0]); } /// Retruns the size of the payload of thix box, excluding the header. /// This value is defined as boxedSize() - 8. size_t Box::payloadSize() { return boxedSize() - 8; } /// Returns a copy of the data pointer. char * Box::asBox() { return data; } /// Makes this box managed if it wasn't already, resetting the internal storage to 8 bytes (the minimum). /// If this box wasn't managed, the original data is left intact - otherwise it is free'd. /// If it was somehow impossible to allocate 8 bytes (should never happen), this will cause segfaults later. void Box::clear() { if (data && managed){free(data);} managed = true; data = malloc(8); if (data){ data_size = 8; ((int*)data)[0] = htonl(data_size); }else{ data_size = 0; } } /// Attempts to typecast this Box to a more specific type and call the toPrettyString() function of that type. /// If this failed, it will print out a message saying pretty-printing is not implemented for . std::string Box::toPrettyString(int indent){ switch( ntohl(((int*)data.c_str())[1]) ) { //type is at this address case 0x6D666864: return ((MFHD*)this)->toPrettyString(indent); break; case 0x6D6F6F66: return ((MOOF*)this)->toPrettyString(indent); break; case 0x61627374: return ((ABST*)this)->toPrettyString(indent); break; case 0x61667274: return ((AFRT*)this)->toPrettyString(indent); break; case 0x61737274: return ((ASRT*)this)->toPrettyString(indent); break; default: return std::string(indent, ' ')+"Unimplemented pretty-printing for box "+std::string(data,4,4)+"\n"; break; } } /// Sets the 8 bits integer at the given index. /// Attempts to resize the data pointer if the index is out of range. /// Fails silently if resizing failed. void Box::setInt8( char newData, size_t index ) { index += 8; if (index >= boxedSize()){ if (!reserve(index, 0, 1)){return;} } data[index] = newData; } /// Gets the 8 bits integer at the given index. /// Attempts to resize the data pointer if the index is out of range. /// Returns zero if resizing failed. char Box::getInt8( size_t index ) { index += 8; if (index >= boxedSize()){ if (!reserve(index, 0, 1)){return 0;} } return data[index]; } /// Sets the 16 bits integer at the given index. /// Attempts to resize the data pointer if the index is out of range. /// Fails silently if resizing failed. void Box::setInt16( short newData, size_t index ) { index += 8; if (index+1 >= boxedSize()){ if (!reserve(index, 0, 2)){return;} } newData = htons( newData ); memcpy( (void*)(data.c_str() + index), (void*)&newData, 2 ); } /// Gets the 16 bits integer at the given index. /// Attempts to resize the data pointer if the index is out of range. /// Returns zero if resizing failed. short Box::getInt16( size_t index ) { index += 8; if (index+1 >= boxedSize()){ if (!reserve(index, 0, 2)){return 0;} } short result; memcpy( (void*)&result, (void*)(data.c_str() + index), 2 ); return ntohs(result); } /// Sets the 24 bits integer at the given index. /// Attempts to resize the data pointer if the index is out of range. /// Fails silently if resizing failed. void Box::setInt24( long newData, size_t index ) { index += 8; if (index+2 >= boxedSize()){ if (!reserve(index, 0, 3)){return;} } data[index] = (newData & 0x00FF0000) >> 16; data[index+1] = (newData & 0x0000FF00) >> 8; data[index+2] = (newData & 0x000000FF); } /// Gets the 24 bits integer at the given index. /// Attempts to resize the data pointer if the index is out of range. /// Returns zero if resizing failed. long Box::getInt24( size_t index ) { index += 8; if (index+2 >= boxedSize()){ if (!reserve(index, 0, 3)){return 0;} } long result = data[index]; result <<= 8; result += data[index+1]; result <<= 8; result += data[index+2]; return result; } /// Sets the 32 bits integer at the given index. /// Attempts to resize the data pointer if the index is out of range. /// Fails silently if resizing failed. void Box::setInt32( long newData, size_t index ) { index += 8; if (index+3 >= boxedSize()){ if (!reserve(index, 0, 4)){return;} } newData = htonl( newData ); memcpy( (char*)data.c_str() + index, (char*)&newData, 4 ); } /// Gets the 32 bits integer at the given index. /// Attempts to resize the data pointer if the index is out of range. /// Returns zero if resizing failed. long Box::getInt32( size_t index ) { index += 8; if (index+3 >= boxedSize()){ if (!reserve(index, 0, 4)){return 0;} } long result; memcpy( (char*)&result, (char*)data.c_str() + index, 4 ); return ntohl(result); } /// Sets the 64 bits integer at the given index. /// Attempts to resize the data pointer if the index is out of range. /// Fails silently if resizing failed. void Box::setInt64( long long int newData, size_t index ) { index += 8; if (index+7 >= boxedSize()){ if (!reserve(index, 0, 8)){return;} } data[index] = ( newData & 0xFF00000000000000 ) >> 56; data[index+1] = ( newData & 0x00FF000000000000 ) >> 48; data[index+2] = ( newData & 0x0000FF0000000000 ) >> 40; data[index+3] = ( newData & 0x000000FF00000000 ) >> 32; data[index+4] = ( newData & 0x00000000FF000000 ) >> 24; data[index+5] = ( newData & 0x0000000000FF0000 ) >> 16; data[index+6] = ( newData & 0x000000000000FF00 ) >> 8; data[index+7] = ( newData & 0x00000000000000FF ); } /// Gets the 64 bits integer at the given index. /// Attempts to resize the data pointer if the index is out of range. /// Returns zero if resizing failed. long long int Box::getInt64( size_t index ) { index += 8; if (index+7 >= boxedSize()){ if (!reserve(index, 0, 8)){return 0;} } long result = data[index]; result <<= 8; result += data[index+1]; result <<= 8; result += data[index+2]; result <<= 8; result += data[index+3]; result <<= 8; result += data[index+4]; result <<= 8; result += data[index+5]; result <<= 8; result += data[index+6]; result <<= 8; result += data[index+7]; return result; } /// Sets the NULL-terminated string at the given index. /// Will attempt to resize if the string doesn't fit. /// Fails silently if resizing failed. void Box::setString(std::string newData, size_t index ) { setString( (char*)newData.c_str(), newData.size(), index ); } /// Sets the NULL-terminated string at the given index. /// Will attempt to resize if the string doesn't fit. /// Fails silently if resizing failed. void Box::setString(char* newData, size_t size, size_t index ) { index += 8; if (index >= boxedSize()){ if (!reserve(index, 0, 1)){return;} data[index] = 0; } if (getStringLen(index) != size){ if (!reserve(index, getStringLen(index)+1, size+1)){return;} } memcpy(data + index, newData, size+1); } /// Gets the NULL-terminated string at the given index. /// Will attempt to resize if the string is out of range. /// Returns null if resizing failed. char * Box::getString(size_t index){ index += 8; if (index >= boxedSize()){ if (!reserve(index, 0, 1)){return 0;} data[index] = 0; } return data+index; } /// Returns the length of the NULL-terminated string at the given index. /// Returns 0 if out of range. size_t Box::getStringLen(size_t index){ index += 8; if (index >= boxedSize()){return 0;} return strlen(data+index); } /// Attempts to reserve enough space for wanted bytes of data at given position, where current bytes of data is now reserved. /// This will move any existing data behind the currently reserved space to the proper location after reserving. /// \returns True on success, false otherwise. bool reserve(size_t position, size_t current, size_t wanted){ if (current == wanted){return true;} if (current < wanted){ //make bigger if (boxedSize() + (wanted-current) > data_size){ //realloc if managed, otherwise fail if (!managed){return false;} void * ret = realloc(data, boxedSize() + (wanted-current)); if (!ret){return false;} data = ret; data_size = boxedSize() + (wanted-current); } //move data behind backward, if any if (boxedSize() - (position+current) > 0){ memmove(position+wanted, position+current, boxedSize() - (position+current)); } //calculate and set new size int newSize = boxedSize() + (wanted-current); ((int*)data)[0] = htonl(newSize); return true; }else{ //make smaller //move data behind forward, if any if (boxedSize() - (position+current) > 0){ memmove(position+wanted, position+current, boxedSize() - (position+current)); } //calculate and set new size int newSize = boxedSize() - (current-wanted); ((int*)data)[0] = htonl(newSize); return true; } } ABST::ABST( ) : Box("abst") { setVersion( 0 ); setFlags( 0 ); setBootstrapinfoVersion( 0 ); setProfile( 0 ); setLive( 1 ); setUpdate( 0 ); setTimeScale( 1000 ); setCurrentMediaTime( 0 ); setSmpteTimeCodeOffset( 0 ); setMovieIdentifier( "" ); setDrmData( "" ); setMetaData( "" ); } void ABST::setVersion( char newVersion ) { setInt8( newVersion, 0 ); } void ABST::setFlags( long newFlags ) { setInt24( newFlags, 1 ); } void ABST::setBootstrapinfoVersion( long newVersion ) { setInt32( newVersion, 4 ); } void ABST::setProfile( char newProfile ) { setInt8((getInt8(8) & 0x3F) + ((newProfile & 0x02) << 6), 8); } void ABST::setLive( char newLive ) { setInt8((getInt8(8) & 0xDF) + ((newLive & 0x01) << 5), 8); } void ABST::setUpdate( char newUpdate ) { setInt8((getInt8(8) & 0xEF) + ((newUpdate & 0x01) << 4), 8); } void ABST::setTimeScale( long newScale ) { setInt32(newScale, 9); } void ABST::setCurrentMediaTime( long long int newTime ) { setInt64( newTime, 13); } void ABST::setSmpteTimeCodeOffset( long long int newTime ) { setInt64( newTime, 21); } void ABST::setMovieIdentifier( std::string newIdentifier ) { movieIdentifier = newIdentifier; isUpdated = true; } void ABST::addServerEntry( std::string newEntry ) { if( std::find( Servers.begin(), Servers.end(), newEntry ) == Servers.end() ) { Servers.push_back( newEntry ); isUpdated = true; } } void ABST::delServerEntry( std::string delEntry ) { for( std::deque::iterator it = Servers.begin(); it != Servers.end(); it++ ) { if( (*it) == delEntry ) { Servers.erase( it ); isUpdated = true; break; } } } void ABST::addQualityEntry( std::string newEntry ) { if( std::find( Qualities.begin(), Qualities.end(), newEntry ) == Qualities.end() ) { Servers.push_back( newEntry ); isUpdated = true; } } void ABST::delQualityEntry( std::string delEntry ) { for( std::deque::iterator it = Qualities.begin(); it != Qualities.end(); it++ ) { if( (*it) == delEntry ) { Qualities.erase( it ); isUpdated = true; break; } } } void ABST::setDrmData( std::string newDrm ) { drmData = newDrm; isUpdated = true; } void ABST::setMetaData( std::string newMetaData ) { metaData = newMetaData; isUpdated = true; } void ABST::addSegmentRunTable( Box * newSegment ) { segmentTables.push_back(newSegment); isUpdated = true; } void ABST::addFragmentRunTable( Box * newFragment ) { fragmentTables.push_back(newFragment); isUpdated = true; } void ABST::regenerate( ) { if (!isUpdated){return;}//skip if already up to date data.resize(29); int myOffset = 29; //0-terminated movieIdentifier memcpy( (char*)data.c_str() + myOffset, movieIdentifier.c_str(), movieIdentifier.size() + 1); myOffset += movieIdentifier.size() + 1; //8-bit server amount setInt8( Servers.size(), myOffset ); myOffset ++; //0-terminated string for each entry for( std::deque::iterator it = Servers.begin(); it != Servers.end(); it++ ) { memcpy( (char*)data.c_str() + myOffset, (*it).c_str(), (*it).size() + 1); myOffset += (*it).size() + 1; } //8-bit quality amount setInt8( Qualities.size(), myOffset ); myOffset ++; //0-terminated string for each entry for( std::deque::iterator it = Qualities.begin();it != Qualities.end(); it++ ) { memcpy( (char*)data.c_str() + myOffset, (*it).c_str(), (*it).size() + 1); myOffset += (*it).size() + 1; } //0-terminated DrmData memcpy( (char*)data.c_str() + myOffset, drmData.c_str(), drmData.size() + 1); myOffset += drmData.size() + 1; //0-terminated MetaData memcpy( (char*)data.c_str() + myOffset, metaData.c_str(), metaData.size() + 1); myOffset += metaData.size() + 1; //8-bit segment run amount setInt8( segmentTables.size(), myOffset ); myOffset ++; //retrieve box for each entry for( std::deque::iterator it = segmentTables.begin(); it != segmentTables.end(); it++ ) { memcpy( (char*)data.c_str() + myOffset, (*it)->asBox().c_str(), (*it)->boxedSize() ); myOffset += (*it)->boxedSize(); } //8-bit fragment run amount setInt8( fragmentTables.size(), myOffset ); myOffset ++; //retrieve box for each entry for( std::deque::iterator it = fragmentTables.begin(); it != fragmentTables.end(); it++ ) { memcpy( (char*)data.c_str() + myOffset, (*it)->asBox().c_str(), (*it)->boxedSize() + 1); myOffset += (*it)->boxedSize(); } isUpdated = false; } std::string ABST::toPrettyString( int indent ) { regenerate(); std::stringbuffer r; r << std::string(indent, ' ') << "Bootstrap Info" << std::endl; r << std::string(indent+1, ' ') << "Version " << getInt8(0) << std::endl; if( getInt8(5) & 0x10 ) { r << std::string(indent+1, ' ') << "Update" << std::endl; } else { r << std::string(indent+1, ' ') << "Replacement or new table" << std::endl; } if( getInt8(5) & 0x20 ) { r << std::string(indent+1, ' ' ) << "Live" << std::endl; }else{ r << std::string(indent+1, ' ' ) << "Recorded" << std::endl; } r << std::string(indent+1, ' ') << "Profile " << ( getInt8(5) & 0xC0 ) << std::endl; r << std::string(indent+1, ' ') << "Timescale " << getInt64(10) << std::endl; r << std::string(indent+1, ' ') << "CurrMediaTime " << getInt32(6) << std::endl; r << std::string(indent+1, ' ') << "Segment Run Tables " << segmentTables.size() << std::endl; for( uint32_t i = 0; i < segmentTables.size(); i++ ) { r += segmentTables[i]->toPrettyString(indent+2); } r += std::string(indent+1, ' ')+"Fragment Run Tables "+JSON::Value((long long int)fragmentTables.size()).asString()+"\n"; for( uint32_t i = 0; i < fragmentTables.size(); i++ ) { r += fragmentTables[i]->toPrettyString(indent+2); } return r.str(); } AFRT::AFRT() : Box("afrt"){ setVersion( 0 ); setUpdate( 0 ); setTimeScale( 1000 ); } void AFRT::setVersion( char newVersion ) { setInt8( newVersion ,0 ); } void AFRT::setUpdate( long newUpdate ) { setInt24( newUpdate, 1 ); } void AFRT::setTimeScale( long newScale ) { setInt32( newScale, 4 ); } void AFRT::addQualityEntry( std::string newQuality ) { qualityModifiers.push_back( newQuality ); isUpdated = true; } void AFRT::addFragmentRun( long firstFragment, long long int firstTimestamp, long duration, char discontinuity ) { fragmentRun newRun; newRun.firstFragment = firstFragment; newRun.firstTimestamp = firstTimestamp; newRun.duration = duration; newRun.discontinuity = discontinuity; fragmentRunTable.push_back( newRun ); isUpdated = true; } void AFRT::regenerate( ) { if (!isUpdated){return;}//skip if already up to date data.resize( 8 ); int myOffset = 8; setInt8( qualityModifiers.size(), myOffset ); myOffset ++; //0-terminated string for each entry for( std::deque::iterator it = qualityModifiers.begin();it != qualityModifiers.end(); it++ ) { memcpy( (char*)data.c_str() + myOffset, (*it).c_str(), (*it).size() + 1); myOffset += (*it).size() + 1; } setInt32( fragmentRunTable.size(), myOffset ); myOffset += 4; //table values for each entry for( std::deque::iterator it = fragmentRunTable.begin();it != fragmentRunTable.end(); it++ ) { setInt32( (*it).firstFragment, myOffset ); myOffset += 4; setInt64( (*it).firstTimestamp, myOffset ); myOffset += 8; setInt32( (*it).duration, myOffset ); myOffset += 4; setInt8( (*it).discontinuity, myOffset ); myOffset += 1; } isUpdated = false; } std::string AFRT::toPrettyString(int indent){ std::string r; r += std::string(indent, ' ')+"Fragment Run Table\n"; if (getInt24(1)){ r += std::string(indent+1, ' ')+"Update\n"; }else{ r += std::string(indent+1, ' ')+"Replacement or new table\n"; } r += std::string(indent+1, ' ')+"Timescale "+JSON::Value((long long int)getInt32(4)).asString()+"\n"; r += std::string(indent+1, ' ')+"Qualities "+JSON::Value((long long int)qualityModifiers.size()).asString()+"\n"; for( uint32_t i = 0; i < qualityModifiers.size(); i++ ) { r += std::string(indent+2, ' ')+"\""+qualityModifiers[i]+"\"\n"; } r += std::string(indent+1, ' ')+"Fragments "+JSON::Value((long long int)fragmentRunTable.size()).asString()+"\n"; for( uint32_t i = 0; i < fragmentRunTable.size(); i ++ ) { r += std::string(indent+2, ' ')+"Duration "+JSON::Value((long long int)fragmentRunTable[i].duration).asString()+", starting at "+JSON::Value((long long int)fragmentRunTable[i].firstFragment).asString()+" @ "+JSON::Value((long long int)fragmentRunTable[i].firstTimestamp).asString()+"\n"; } return r; } ASRT::ASRT() : Box("asrt") { setVersion( 0 ); setUpdate( 0 ); } void ASRT::setVersion( char newVersion ) { setInt8( newVersion, 0 ); } void ASRT::setUpdate( long newUpdate ) { setInt24( newUpdate, 1 ); } void ASRT::addQualityEntry( std::string newQuality ) { qualityModifiers.push_back( newQuality ); isUpdated = true; } void ASRT::addSegmentRun( long firstSegment, long fragmentsPerSegment ) { segmentRun newRun; newRun.firstSegment = firstSegment; newRun.fragmentsPerSegment = fragmentsPerSegment; segmentRunTable.push_back( newRun ); isUpdated = true; } void ASRT::regenerate( ) { if (!isUpdated){return;}//skip if already up to date data.resize( 4 ); int myOffset = 4; setInt8( qualityModifiers.size(), myOffset ); myOffset ++; //0-terminated string for each entry for( std::deque::iterator it = qualityModifiers.begin();it != qualityModifiers.end(); it++ ) { memcpy( (char*)data.c_str() + myOffset, (*it).c_str(), (*it).size() + 1); myOffset += (*it).size() + 1; } setInt32( segmentRunTable.size(), myOffset ); myOffset += 4; //table values for each entry for( std::deque::iterator it = segmentRunTable.begin();it != segmentRunTable.end(); it++ ) { setInt32( (*it).firstSegment, myOffset ); myOffset += 4; setInt32( (*it).fragmentsPerSegment, myOffset ); myOffset += 4; } isUpdated = false; } std::string ASRT::toPrettyString(int indent){ std::string r; r += std::string(indent, ' ')+"Segment Run Table\n"; if (getInt24(1)){ r += std::string(indent+1, ' ')+"Update\n"; }else{ r += std::string(indent+1, ' ')+"Replacement or new table\n"; } r += std::string(indent+1, ' ')+"Qualities "+JSON::Value((long long int)qualityModifiers.size()).asString()+"\n"; for( uint32_t i = 0; i < qualityModifiers.size(); i++ ) { r += std::string(indent+2, ' ')+"\""+qualityModifiers[i]+"\"\n"; } r += std::string(indent+1, ' ')+"Segments "+JSON::Value((long long int)segmentRunTable.size()).asString()+"\n"; for( uint32_t i = 0; i < segmentRunTable.size(); i ++ ) { r += std::string(indent+2, ' ')+JSON::Value((long long int)segmentRunTable[i].fragmentsPerSegment).asString()+" fragments per, starting at "+JSON::Value((long long int)segmentRunTable[i].firstSegment).asString()+"\n"; } return r; } MFHD::MFHD() : Box("mfhd") { setInt32(0,0); } void MFHD::setSequenceNumber( long newSequenceNumber ) { setInt32( newSequenceNumber, 4 ); } std::string MFHD::toPrettyString( int indent ) { std::string r; r += std::string(indent, ' ')+"Movie Fragment Header\n"; r += std::string(indent+1, ' ')+"SequenceNumber: "+JSON::Value((long long int)getInt32(4)).asString()+"\n"; } MOOF::MOOF() : Box("moof") {} void MOOF::addContent( Box* newContent ) { content.push_back( newContent ); isUpdated = true; } void MOOF::regenerate() { if (!isUpdated){return;}//skip if already up to date data.resize( 0 ); int myOffset = 0; //retrieve box for each entry for( std::deque::iterator it = content.begin(); it != content.end(); it++ ) { memcpy( (char*)data.c_str() + myOffset, (*it)->asBox().c_str(), (*it)->boxedSize() + 1); myOffset += (*it)->boxedSize(); } isUpdated = false; } std::string MOOF::toPrettyString( int indent ) { std::string r; r += std::string(indent, ' ')+"Movie Fragment\n"; for( uint32_t i = 0; i < content.size(); i++ ) { r += content[i]->toPrettyString(indent+2); } return r; } TRUN::TRUN() : Box("trun") { setInt8(0,0); } void TRUN::setFlags( long newFlags ) { setInt24(newFlags,1); isUpdated = true; } void TRUN::setDataOffset( long newOffset ) { dataOffset = newOffset; isUpdated = true; } void TRUN::setFirstSampleFlags( char sampleDependsOn, char sampleIsDependedOn, char sampleHasRedundancy, char sampleIsDifferenceSample ) { firstSampleFlags = getSampleFlags( sampleDependsOn, sampleIsDependedOn, sampleHasRedundancy, sampleIsDifferenceSample ); isUpdated = true; } void TRUN::addSampleInformation( long newDuration, long newSize, char sampleDependsOn, char sampleIsDependedOn, char sampleHasRedundancy,char sampleIsDifferenceSample, long newCompositionTimeOffset ) { trunSampleInformation newSample; newSample.sampleDuration = newDuration; newSample.sampleSize = newSize; newSample.sampleFlags = getSampleFlags( sampleDependsOn, sampleIsDependedOn, sampleHasRedundancy, sampleIsDifferenceSample ); newSample.sampleCompositionTimeOffset = newCompositionTimeOffset; allSamples.push_back( newSample ); isUpdated = true; } long TRUN::getSampleFlags( char sampleDependsOn, char sampleIsDependedOn, char sampleHasRedundancy, char sampleIsDifferenceSample ) { long sampleFlags = ( sampleDependsOn & 0x03 ); sampleFlags <<= 2; sampleFlags += ( sampleIsDependedOn & 0x03 ); sampleFlags <<= 2; sampleFlags += ( sampleHasRedundancy & 0x03 ); sampleFlags <<= 5; sampleFlags += ( sampleIsDifferenceSample & 0x01 ); sampleFlags <<= 17; sampleFlags += 0x0000FFFF; return sampleFlags; } void TRUN::regenerate( ) { if (!isUpdated){return;}//skip if already up to date data.resize( 4 ); int myOffset = 4; setInt32( allSamples.size(), myOffset ); myOffset += 4; if( getInt24( 1 ) & 0x000001 ) { setInt32( dataOffset, myOffset ); myOffset += 4; } if( getInt24( 1 ) & 0x000004 ) { setInt32( firstSampleFlags, myOffset ); myOffset += 4; } for( std::deque::iterator it = allSamples.begin(); it != allSamples.end(); it++ ) { if( getInt24( 1 ) & 0x000100 ) { setInt32( (*it).sampleDuration, myOffset ); myOffset += 4; } if( getInt24( 1 ) & 0x000200 ) { setInt32( (*it).sampleSize, myOffset ); myOffset += 4; } if( getInt24( 1 ) & 0x000400 ) { setInt32( (*it).sampleFlags, myOffset ); myOffset += 4; } if( getInt24( 1 ) & 0x000800 ) { setInt32( (*it).sampleCompositionTimeOffset, myOffset ); myOffset += 4; } } isUpdated = false; } };