mistserver/lib/ts_stream.cpp
2019-01-26 00:51:30 +01:00

1018 lines
33 KiB
C++

#include "ts_stream.h"
#include "defines.h"
#include "h264.h"
#include "h265.h"
#include "mp4_generic.h"
#include "nal.h"
#include <sys/stat.h>
#include <stdint.h>
#include "mpeg.h"
namespace TS{
void ADTSRemainder::setRemainder(const aac::adts &p, const void *source, uint32_t avail, uint64_t bPos){
if (!p.getCompleteSize()){return;}
if (max < p.getCompleteSize()){
void *newmainder = realloc(data, p.getCompleteSize());
if (newmainder){
max = p.getCompleteSize();
data = (char *)newmainder;
}
}
if (max >= p.getCompleteSize()){
len = p.getCompleteSize();
now = avail;
bpos = bPos;
memcpy(data, source, now);
}
}
void ADTSRemainder::append(const char *p, uint32_t pLen){
if (now + pLen > len){
FAIL_MSG("Data to append does not fit into the remainder");
return;
}
memcpy(data + now, p, pLen);
now += pLen;
}
bool ADTSRemainder::isComplete(){return (len == now);}
void ADTSRemainder::clear(){
len = 0;
now = 0;
bpos = 0;
}
ADTSRemainder::ADTSRemainder(){
data = 0;
max = 0;
now = 0;
len = 0;
bpos = 0;
}
ADTSRemainder::~ADTSRemainder(){
if (data){
free(data);
data = 0;
}
}
uint64_t ADTSRemainder::getLength(){return len;}
uint64_t ADTSRemainder::getBpos(){return bpos;}
uint64_t ADTSRemainder::getTodo(){return len - now;}
char *ADTSRemainder::getData(){return data;}
Stream::Stream(bool _threaded){
threaded = _threaded;
}
Stream::~Stream(){
}
void Stream::parse(char * newPack, uint64_t bytePos) {
Packet newPacket;
newPacket.FromPointer(newPack);
parse(newPacket, bytePos);
}
void Stream::partialClear(){
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
pesStreams.clear();
pesPositions.clear();
outPackets.clear();
buildPacket.clear();
seenUnitStart.clear();
lastms.clear();
rolloverCount.clear();
}
void Stream::clear(){
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
partialClear();
pidToCodec.clear();
adtsInfo.clear();
spsInfo.clear();
ppsInfo.clear();
hevcInfo.clear();
metaInit.clear();
descriptors.clear();
mappingTable.clear();
lastPMT.clear();
lastPAT = 0;
pmtTracks.clear();
remainders.clear();
associationTable = ProgramAssociationTable();
}
void Stream::finish(){
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
if (!pesStreams.size()){return;}
for (std::map<size_t, std::deque<Packet> >::const_iterator i = pesStreams.begin();
i != pesStreams.end(); i++){
parsePES(i->first, true);
}
}
void Stream::add(char * newPack, uint64_t bytePos) {
Packet newPacket;
newPacket.FromPointer(newPack);
add(newPacket, bytePos);
}
void Stream::add(Packet & newPack, uint64_t bytePos) {
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
uint32_t tid = newPack.getPID();
bool unitStart = newPack.getUnitStart();
std::deque<Packet> & PS = pesStreams[tid];
if ((unitStart || PS.size()) &&
(tid == 0 || newPack.isPMT() || pidToCodec.count(tid))){
PS.push_back(newPack);
if (unitStart){
pesPositions[tid].push_back(bytePos);
++(seenUnitStart[tid]);
}
}
}
bool Stream::isDataTrack(size_t tid) const {
if (tid == 0){return false;}
{
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
return !pmtTracks.count(tid);
}
}
void Stream::parse(size_t tid){
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
if (!pesStreams.count(tid) || pesStreams[tid].size() == 0){
return;
}
std::deque<Packet> &trackPackets = pesStreams[tid];
// Handle PAT packets
if (tid == 0){
///\todo Keep track of updates in PAT instead of keeping only the last PAT as a reference
associationTable = trackPackets.back();
associationTable.parsePIDs();
lastPAT = Util::bootSecs();
size_t pmtCount = associationTable.getProgramCount();
for (size_t i = 0; i < pmtCount; i++){pmtTracks.insert(associationTable.getProgramPID(i));}
pesStreams.erase(0);
return;
}
// Ignore conditional access packets. We don't care.
if (tid == 1){return;}
// Handle PMT packets
if (pmtTracks.count(tid)){
///\todo Keep track of updates in PMT instead of keeping only the last PMT per program as a
/// reference
mappingTable[tid] = trackPackets.back();
lastPMT[tid] = Util::bootSecs();
ProgramMappingEntry entry = mappingTable[tid].getEntry(0);
while (entry){
uint32_t pid = entry.getElementaryPid();
uint32_t sType = entry.getStreamType();
switch (sType){
case H264:
case AAC:
case H265:
case AC3:
case ID3:
case MP2:
case MPEG2:
pidToCodec[pid] = sType;
if (sType == ID3){
metaInit[pid] = std::string(entry.getESInfo(), entry.getESInfoLength());
}
break;
default: break;
}
entry.advance();
}
pesStreams.erase(tid);
return;
}
while(seenUnitStart[tid] > 1) {
parsePES(tid);
}
}
void Stream::parse(Packet & newPack, uint64_t bytePos) {
add(newPack, bytePos);
if (newPack.getUnitStart()){
parse(newPack.getPID());
}
}
bool Stream::hasPacketOnEachTrack() const{
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
if (!pidToCodec.size()){
// INFO_MSG("no packet on each track 1, pidtocodec.size: %d, outpacket.size: %d",
// pidToCodec.size(), outPackets.size());
return false;
}
size_t missing = 0;
uint64_t firstTime = 0xffffffffffffffffull, lastTime = 0;
for (std::map<size_t, uint32_t>::const_iterator it = pidToCodec.begin();
it != pidToCodec.end(); it++){
if (!hasPacket(it->first)){
missing++;
}else{
if (outPackets.at(it->first).front().getTime() < firstTime){
firstTime = outPackets.at(it->first).front().getTime();
}
if (outPackets.at(it->first).back().getTime() > lastTime){
lastTime = outPackets.at(it->first).back().getTime();
}
}
}
return (!missing || (missing != pidToCodec.size() && lastTime - firstTime > 2000));
}
bool Stream::hasPacket(size_t tid) const {
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
std::map<size_t, std::deque<Packet> >::const_iterator pesIt = pesStreams.find(tid);
if (pesIt == pesStreams.end()){
return false;
}
if (outPackets.count(tid) && outPackets.at(tid).size()){
return true;
}
if (pidToCodec.count(tid) && seenUnitStart.count(tid) && seenUnitStart.at(tid) > 1){
return true;
}
return false;
}
bool Stream::hasPacket() const{
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
if (!pesStreams.size()){
return false;
}
if (outPackets.size()){
for (std::map<size_t, std::deque<DTSC::Packet> >::const_iterator i =
outPackets.begin();
i != outPackets.end(); i++){
if (i->second.size()){
return true;
}
}
}
for (std::map<size_t, uint32_t>::const_iterator i = seenUnitStart.begin();
i != seenUnitStart.end(); i++){
if (pidToCodec.count(i->first) && i->second > 1){
return true;
}
}
return false;
}
uint64_t decodePTS(const char * data){
uint64_t time;
time = ((data[0] >> 1) & 0x07);
time <<= 15;
time |= ((uint32_t)data[1] << 7) | ((data[2] >> 1) & 0x7F);
time <<= 15;
time |= ((uint32_t)data[3] << 7) | ((data[4] >> 1) & 0x7F);
time /= 90;
return time;
}
void Stream::parsePES(size_t tid, bool finished){
if (!pidToCodec.count(tid)){
return; // skip unknown codecs
}
std::deque<Packet> &inStream = pesStreams[tid];
if (inStream.size() <= 1){
if (!finished){FAIL_MSG("No PES packets to parse");}
return;
}
// Find number of packets before unit Start
size_t packNum = 1;
std::deque<Packet>::iterator curPack = inStream.begin();
if (seenUnitStart[tid] == 2 && inStream.begin()->getUnitStart() && inStream.rbegin()->getUnitStart()){
packNum = inStream.size() - 1;
curPack = inStream.end();
curPack--;
}else{
curPack++;
while (curPack != inStream.end() && !curPack->getUnitStart()){
curPack++;
packNum++;
}
}
if (!finished && curPack == inStream.end()){
FAIL_MSG("No PES packets to parse (%" PRIu32 ")", seenUnitStart[tid]);
return;
}
// We now know we're deleting 1 UnitStart, so we can pop the pesPositions and lower the seenUnitStart counter.
--(seenUnitStart[tid]);
std::deque<uint64_t> &inPositions = pesPositions[tid];
uint64_t bPos = inPositions.front();
inPositions.pop_front();
// Create a buffer for the current PES, and remove it from the pesStreams buffer.
uint32_t paySize = 0;
// Loop over the packets we need, and calculate the total payload size
curPack = inStream.begin();
int lastCtr = curPack->getContinuityCounter() - 1;
for (size_t i = 0; i < packNum; i++){
if (curPack->getContinuityCounter() == lastCtr){
curPack++;
continue;
}
lastCtr = curPack->getContinuityCounter();
paySize += curPack->getPayloadLength();
curPack++;
}
VERYHIGH_MSG("Parsing PES for track %zu, length %" PRIu32, tid, paySize);
// allocate a buffer, do it all again, but this time also copy the data bytes over to char*
// payload
char *payload = (char *)malloc(paySize);
if(!payload){
FAIL_MSG("cannot allocate PES packet!");
return;
}
paySize = 0;
curPack = inStream.begin();
lastCtr = curPack->getContinuityCounter() - 1;
for (int i = 0; i < packNum; i++){
if (curPack->getContinuityCounter() == lastCtr){
curPack++;
continue;
}
if (curPack->getContinuityCounter() - lastCtr != 1 && curPack->getContinuityCounter()){
INFO_MSG("Parsing PES on track %zu, missed %d packets", tid,
curPack->getContinuityCounter() - lastCtr - 1);
}
lastCtr = curPack->getContinuityCounter();
memcpy(payload + paySize, curPack->getPayload(), curPack->getPayloadLength());
paySize += curPack->getPayloadLength();
curPack++;
}
inStream.erase(inStream.begin(), curPack);
// we now have the whole PES packet in char* payload, with a total size of paySize (including
// headers)
// Parse the PES header
uint32_t offset = 0;
while (offset < paySize){
const char *pesHeader = payload + offset;
// Check for large enough buffer
if ((paySize - offset) < 9 || (paySize - offset) < 9 + pesHeader[8]){
INFO_MSG("Not enough data on track %zu (%d / %d), discarding remainder of data", tid,
paySize - offset, 9 + pesHeader[8]);
break;
}
// Check for valid PES lead-in
if (pesHeader[0] != 0 || pesHeader[1] != 0x00 || pesHeader[2] != 0x01){
INFO_MSG("Invalid PES Lead in on track %zu, discarding it", tid);
break;
}
// Read the payload size.
// Note: if the payload size is 0, then we assume the pes packet will cover the entire TS
// Unit.
// Note: this is technically only allowed for video pes streams.
uint64_t realPayloadSize = Bit::btohs(pesHeader + 4);
if (!realPayloadSize){
realPayloadSize = paySize; // PES header size already included here
}else{
realPayloadSize += 6; // add the PES header size, always 6 bytes
}
// realPayloadSize is now the whole packet
// We substract PES_header_data_length, plus the 9 bytes of mandatory header bytes
realPayloadSize -= (9 + pesHeader[8]);
// Read the metadata for this PES Packet
///\todo Determine keyframe-ness
uint64_t timeStamp = 0;
int64_t timeOffset = 0;
uint64_t pesOffset = 9; // mandatory headers
if ((pesHeader[7] >> 6) & 0x02){// Check for PTS presence
timeStamp = decodePTS(pesHeader + pesOffset);
pesOffset += 5;
if (((pesHeader[7] & 0xC0) >> 6) &
0x01){// Check for DTS presence (yes, only if PTS present)
timeOffset = timeStamp;
timeStamp = decodePTS(pesHeader + pesOffset);
pesOffset += 5;
timeOffset -= timeStamp;
}
}
timeStamp += (rolloverCount[tid] * TS_PTS_ROLLOVER);
if ((timeStamp < lastms[tid]) && ((timeStamp % TS_PTS_ROLLOVER) < 0.1 * TS_PTS_ROLLOVER) && ((lastms[tid] % TS_PTS_ROLLOVER) > 0.9 * TS_PTS_ROLLOVER)){
++rolloverCount[tid];
timeStamp += TS_PTS_ROLLOVER;
}
if (pesHeader[7] & 0x20){// ESCR - ignored
pesOffset += 6;
}
if (pesHeader[7] & 0x10){// ESR - ignored
pesOffset += 3;
}
if (pesHeader[7] & 0x08){// trick mode - ignored
pesOffset += 1;
}
if (pesHeader[7] & 0x04){// additional copy - ignored
pesOffset += 1;
}
if (pesHeader[7] & 0x02){// crc - ignored
pesOffset += 2;
}
if (paySize - offset - pesOffset < realPayloadSize){
WARN_MSG("Packet loss detected (%" PRIu64 " != %" PRIu64 "), glitches will occur", paySize-offset-pesOffset, realPayloadSize);
realPayloadSize = paySize - offset - pesOffset;
}
const char *pesPayload = pesHeader + pesOffset;
parseBitstream(tid, pesPayload, realPayloadSize, timeStamp, timeOffset, bPos, pesHeader[6] & 0x04 );
lastms[tid] = timeStamp;
// Shift the offset by the payload size, the mandatory headers and the optional
// headers/padding
offset += realPayloadSize + (9 + pesHeader[8]);
}
free(payload);
}
void Stream::setLastms(size_t tid, uint64_t timestamp){
lastms[tid] = timestamp;
rolloverCount[tid] = timestamp / TS_PTS_ROLLOVER;
}
void Stream::parseBitstream(size_t tid, const char *pesPayload, uint64_t realPayloadSize,
uint64_t timeStamp, int64_t timeOffset, uint64_t bPos, bool alignment){
// Create a new (empty) DTSC Packet at the end of the buffer
unsigned long thisCodec = pidToCodec[tid];
std::deque<DTSC::Packet> & out = outPackets[tid];
if (thisCodec == AAC){
// Parse all the ADTS packets
uint64_t offsetInPes = 0;
uint64_t msRead = 0;
if (remainders.count(tid) && remainders[tid].getLength()){
offsetInPes = std::min(remainders[tid].getTodo(), realPayloadSize);
remainders[tid].append(pesPayload, offsetInPes);
if (remainders[tid].isComplete()){
aac::adts adtsPack(remainders[tid].getData(), remainders[tid].getLength());
if (adtsPack){
if (!adtsInfo.count(tid) || !adtsInfo[tid].sameHeader(adtsPack)){
MEDIUM_MSG("Setting new ADTS header: %s", adtsPack.toPrettyString().c_str());
adtsInfo[tid] = adtsPack;
}
out.push_back(DTSC::Packet());
out.back().genericFill(
timeStamp - ((adtsPack.getSampleCount() * 1000) / adtsPack.getFrequency()),
timeOffset, tid, adtsPack.getPayload(), adtsPack.getPayloadSize(),
remainders[tid].getBpos(), 0);
}
remainders[tid].clear();
}
}
while (offsetInPes < realPayloadSize){
aac::adts adtsPack(pesPayload + offsetInPes, realPayloadSize - offsetInPes);
if (adtsPack && adtsPack.getCompleteSize() + offsetInPes <= realPayloadSize){
if (!adtsInfo.count(tid) || !adtsInfo[tid].sameHeader(adtsPack)){
DONTEVEN_MSG("Setting new ADTS header: %s", adtsPack.toPrettyString().c_str());
adtsInfo[tid] = adtsPack;
}
out.push_back(DTSC::Packet());
if (adtsPack.getPayloadSize()){
out.back().genericFill(timeStamp + msRead, timeOffset, tid,
adtsPack.getPayload(), adtsPack.getPayloadSize(), bPos,
0);
offsetInPes += adtsPack.getCompleteSize();
msRead += (adtsPack.getSampleCount() * 1000) / adtsPack.getFrequency();
}else{
offsetInPes++;
}
}else{
/// \todo What about the case that we have an invalid start, going over the PES boundary?
if (!adtsPack){
offsetInPes++;
}else{
// remainder, keep it, use it next time
remainders[tid].setRemainder(adtsPack, pesPayload + offsetInPes,
realPayloadSize - offsetInPes, bPos);
offsetInPes = realPayloadSize; // skip to end of PES
}
}
}
}
if (thisCodec == ID3 || thisCodec == AC3 || thisCodec == MP2){
out.push_back(DTSC::Packet());
out.back().genericFill(timeStamp, timeOffset, tid, pesPayload, realPayloadSize,
bPos, 0);
if (thisCodec == MP2 && !mp2Hdr.count(tid)){
mp2Hdr[tid] = std::string(pesPayload, realPayloadSize);
}
}
if (thisCodec == H264 || thisCodec == H265){
const char *nextPtr;
const char *pesEnd = pesPayload+realPayloadSize;
bool isKeyFrame = false;
uint32_t nalSize = 0;
nextPtr = nalu::scanAnnexB(pesPayload, realPayloadSize);
if (!nextPtr){
nextPtr = pesEnd;
nalSize = realPayloadSize;
if(!alignment && timeStamp && buildPacket.count(tid) && timeStamp != buildPacket[tid].getTime()){
FAIL_MSG("No startcode in packet @ %" PRIu64 " ms, and time is not equal to %" PRIu64 " ms so can't merge", timeStamp, buildPacket[tid].getTime());
return;
}
if (alignment){
// If the timestamp differs from current PES timestamp, send the previous packet out and
// fill a new one.
if (buildPacket[tid].getTime() != timeStamp){
// Add the finished DTSC packet to our output buffer
out.push_back(buildPacket[tid]);
size_t size;
char * tmp ;
buildPacket[tid].getString("data", tmp, size);
INFO_MSG("buildpacket: size: %zu, timestamp: %" PRIu64, size, buildPacket[tid].getTime())
// Create a new empty packet with the key frame bit set to true
buildPacket[tid].null();
buildPacket[tid].genericFill(timeStamp, timeOffset, tid, 0, 0, bPos, true);
buildPacket[tid].setKeyFrame(false);
}
if (!buildPacket.count(tid)){
buildPacket[tid].genericFill(timeStamp, timeOffset, tid, 0, 0, bPos, true);
buildPacket[tid].setKeyFrame(false);
}
// Check if this is a keyframe
parseNal(tid, pesPayload, nextPtr, isKeyFrame);
// If yes, set the keyframe flag
if (isKeyFrame){
buildPacket[tid].setKeyFrame(true);
}
// No matter what, now append the current NAL unit to the current packet
buildPacket[tid].appendNal(pesPayload, nalSize);
}else{
buildPacket[tid].upgradeNal(pesPayload, nalSize);
return;
}
}
while (nextPtr < pesEnd){
if (!nextPtr){nextPtr = pesEnd;}
//Calculate size of NAL unit, removing null bytes from the end
nalSize = nalu::nalEndPosition(pesPayload, nextPtr - pesPayload) - pesPayload;
if (nalSize){
// If we don't have a packet yet, init an empty packet with the key frame bit set to true
if (!buildPacket.count(tid)){
buildPacket[tid].genericFill(timeStamp, timeOffset, tid, 0, 0, bPos, true);
buildPacket[tid].setKeyFrame(false);
}
// Check if this is a keyframe
parseNal(tid, pesPayload, nextPtr, isKeyFrame);
// If yes, set the keyframe flag
if (isKeyFrame){
buildPacket[tid].setKeyFrame(true);
}
// If the timestamp differs from current PES timestamp, send the previous packet out and
// fill a new one.
if (buildPacket[tid].getTime() != timeStamp){
// Add the finished DTSC packet to our output buffer
out.push_back(buildPacket[tid]);
size_t size;
char * tmp ;
buildPacket[tid].getString("data", tmp, size);
// INFO_MSG("buildpacket: size: %d, timestamp: %llu", size, buildPacket[tid].getTime())
// Create a new empty packet with the key frame bit set to true
buildPacket[tid].null();
buildPacket[tid].genericFill(timeStamp, timeOffset, tid, 0, 0, bPos, true);
buildPacket[tid].setKeyFrame(false);
}
// No matter what, now append the current NAL unit to the current packet
buildPacket[tid].appendNal(pesPayload, nalSize);
}
if (((nextPtr - pesPayload) + 3) >= realPayloadSize){return;}//end of the line
realPayloadSize -= ((nextPtr - pesPayload) + 3); // decrease the total size
pesPayload = nextPtr + 3;
nextPtr = nalu::scanAnnexB(pesPayload, realPayloadSize);
}
}
if (thisCodec == MPEG2){
const char *origBegin = pesPayload;
size_t origSize = realPayloadSize;
const char *nextPtr;
const char *pesEnd = pesPayload+realPayloadSize;
bool isKeyFrame = false;
nextPtr = nalu::scanAnnexB(pesPayload, realPayloadSize);
if (!nextPtr){
WARN_MSG("No start code found in entire PES packet!");
return;
}
uint32_t nalno = 0;
//We only check the first 8 packets, because keys should always be near the front of a PES.
while (nextPtr < pesEnd && nalno < 8){
if (!nextPtr){nextPtr = pesEnd;}
//Calculate size of NAL unit, removing null bytes from the end
nalu::nalEndPosition(pesPayload, nextPtr - pesPayload);
// Check if this is a keyframe
parseNal(tid, pesPayload, nextPtr, isKeyFrame);
++nalno;
if (((nextPtr - pesPayload) + 3) >= realPayloadSize){break;}//end of the loop
realPayloadSize -= ((nextPtr - pesPayload) + 3); // decrease the total size
pesPayload = nextPtr + 3;
nextPtr = nalu::scanAnnexB(pesPayload, realPayloadSize);
}
out.push_back(DTSC::Packet());
out.back().genericFill(timeStamp, timeOffset, tid, origBegin, origSize, bPos, isKeyFrame);
}
}
void Stream::getPacket(size_t tid, DTSC::Packet & pack) {
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
pack.null();
if (!hasPacket(tid)){
ERROR_MSG("Trying to obtain a packet on track %zu, but no full packet is available", tid);
return;
}
bool packetReady = outPackets.count(tid) && outPackets[tid].size();
if (!packetReady){
parse(tid);
packetReady = outPackets.count(tid) && outPackets[tid].size();
}
if (!packetReady){
ERROR_MSG("Track %lu: PES without valid packets?", tid);
return;
}
pack = outPackets[tid].front();
outPackets[tid].pop_front();
if (!outPackets[tid].size()){outPackets.erase(tid);}
}
void Stream::parseNal(size_t tid, const char *pesPayload, const char *nextPtr, bool &isKeyFrame){
bool firstSlice = true;
char typeNal;
if (pidToCodec[tid] == MPEG2){
typeNal = pesPayload[0];
switch (typeNal){
case 0xB3:
if (!mpeg2SeqHdr.count(tid)){
mpeg2SeqHdr[tid] = std::string(pesPayload, (nextPtr - pesPayload));
}
break;
case 0xB5:
if (!mpeg2SeqExt.count(tid)){
mpeg2SeqExt[tid] = std::string(pesPayload, (nextPtr - pesPayload));
}
break;
case 0xB8:
isKeyFrame = true;
break;
}
return;
}
isKeyFrame = false;
if (pidToCodec[tid] == H264){
typeNal = pesPayload[0] & 0x1F;
switch (typeNal){
case 0x01:{
if (firstSlice){
firstSlice = false;
if (!isKeyFrame){
Utils::bitstream bs;
for (size_t i = 1; i < 10 && i < (nextPtr - pesPayload); i++){
if (i + 2 < (nextPtr - pesPayload) &&
(memcmp(pesPayload + i, "\000\000\003", 3) == 0)){// Emulation prevention bytes
bs.append(pesPayload + i, 2);
i += 2;
}else{
bs.append(pesPayload + i, 1);
}
}
bs.getExpGolomb(); // Discard first_mb_in_slice
uint64_t sliceType = bs.getUExpGolomb();
if (sliceType == 2 || sliceType == 4 || sliceType == 7 || sliceType == 9){
isKeyFrame = true;
}
}
}
break;
}
case 0x05:{
isKeyFrame = true;
break;
}
case 0x07:{
spsInfo[tid] = std::string(pesPayload, (nextPtr - pesPayload));
break;
}
case 0x08:{
ppsInfo[tid] = std::string(pesPayload, (nextPtr - pesPayload));
break;
}
default: break;
}
}else if (pidToCodec[tid] == H265){
typeNal = (((pesPayload[0] & 0x7E) >> 1) & 0xFF);
switch (typeNal){
case 2:
case 3: // TSA Picture
case 4:
case 5: // STSA Picture
case 6:
case 7: // RADL Picture
case 8:
case 9: // RASL Picture
case 16:
case 17:
case 18: // BLA Picture
case 19:
case 20: // IDR Picture
case 21:{// CRA Picture
isKeyFrame = true;
break;
}
case 32:
case 33:
case 34:{
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
hevcInfo[tid].addUnit(std::string(pesPayload, nextPtr - pesPayload)); // may i convert to (char *)?
break;
}
default: break;
}
}
}
uint32_t Stream::getEarliestPID(){
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
uint64_t packTime = 0xFFFFFFFFull;
uint32_t packTrack = 0;
for (std::map<size_t, std::deque<DTSC::Packet> >::iterator it = outPackets.begin();
it != outPackets.end(); it++){
if (it->second.front().getTime() < packTime){
packTrack = it->first;
packTime = it->second.front().getTime();
}
}
return packTrack;
}
void Stream::getEarliestPacket(DTSC::Packet &pack){
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
pack.null();
uint64_t packTime = 0xFFFFFFFFull;
uint64_t packTrack = 0;
for (std::map<size_t, std::deque<DTSC::Packet> >::iterator it = outPackets.begin();
it != outPackets.end(); it++){
if (it->second.size() && it->second.front().getTime() < packTime){
packTrack = it->first;
packTime = it->second.front().getTime();
}
}
if (packTrack){getPacket(packTrack, pack);}
}
void Stream::initializeMetadata(DTSC::Meta &meta, size_t tid, size_t mappingId){
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
size_t mId = mappingId;
for (std::map<size_t, uint32_t>::const_iterator it = pidToCodec.begin();
it != pidToCodec.end(); it++){
if (tid && it->first != tid){continue;}
if (mId == 0){mId = it->first;}
if (meta.tracks.count(mId) && meta.tracks[mId].codec.size()){continue;}
switch (it->second){
case H264:{
if (!spsInfo.count(it->first) || !ppsInfo.count(it->first)){
MEDIUM_MSG("Aborted meta fill for h264 track %lu: no SPS/PPS", it->first);
continue;
}
meta.tracks[mId].type = "video";
meta.tracks[mId].codec = "H264";
meta.tracks[mId].trackID = mId;
std::string tmpBuffer = spsInfo[it->first];
h264::sequenceParameterSet sps(spsInfo[it->first].data(), spsInfo[it->first].size());
h264::SPSMeta spsChar = sps.getCharacteristics();
meta.tracks[mId].width = spsChar.width;
meta.tracks[mId].height = spsChar.height;
meta.tracks[mId].fpks = spsChar.fps * 1000;
MP4::AVCC avccBox;
avccBox.setVersion(1);
avccBox.setProfile(spsInfo[it->first][1]);
avccBox.setCompatibleProfiles(spsInfo[it->first][2]);
avccBox.setLevel(spsInfo[it->first][3]);
avccBox.setSPSCount(1);
avccBox.setSPS(spsInfo[it->first]);
avccBox.setPPSCount(1);
avccBox.setPPS(ppsInfo[it->first]);
meta.tracks[mId].init = std::string(avccBox.payload(), avccBox.payloadSize());
}break;
case H265:{
if (!hevcInfo.count(it->first) || !hevcInfo[it->first].haveRequired()){
MEDIUM_MSG("Aborted meta fill for hevc track %lu: no info nal unit", it->first);
continue;
}
meta.tracks[mId].type = "video";
meta.tracks[mId].codec = "HEVC";
meta.tracks[mId].trackID = mId;
meta.tracks[mId].init = hevcInfo[it->first].generateHVCC();
int pmtCount = associationTable.getProgramCount();
for (int i = 0; i < pmtCount; i++){
int pid = associationTable.getProgramPID(i);
ProgramMappingEntry entry = mappingTable[pid].getEntry(0);
while (entry){
if (entry.getElementaryPid() == tid){
meta.tracks[mId].lang =
ProgramDescriptors(entry.getESInfo(), entry.getESInfoLength()).getLanguage();
}
entry.advance();
}
}
}break;
case MPEG2:{
meta.tracks[mId].type = "video";
meta.tracks[mId].codec = "MPEG2";
meta.tracks[mId].trackID = mId;
meta.tracks[mId].init = std::string("\000\000\001", 3) + mpeg2SeqHdr[it->first] + std::string("\000\000\001", 3) + mpeg2SeqExt[it->first];
Mpeg::MPEG2Info info = Mpeg::parseMPEG2Header(meta.tracks[mId].init);
meta.tracks[mId].width = info.width;
meta.tracks[mId].height = info.height;
meta.tracks[mId].fpks = info.fps * 1000;
}break;
case ID3:{
meta.tracks[mId].type = "meta";
meta.tracks[mId].codec = "ID3";
meta.tracks[mId].trackID = mId;
meta.tracks[mId].init = metaInit[it->first];
}break;
case AC3:{
meta.tracks[mId].type = "audio";
meta.tracks[mId].codec = "AC3";
meta.tracks[mId].trackID = mId;
meta.tracks[mId].size = 16;
///\todo Fix these 2 values
meta.tracks[mId].rate = 0;
meta.tracks[mId].channels = 0;
}break;
case MP2:{
meta.tracks[mId].type = "audio";
meta.tracks[mId].codec = "MP2";
meta.tracks[mId].trackID = mId;
Mpeg::MP2Info info = Mpeg::parseMP2Header(mp2Hdr[it->first]);
meta.tracks[mId].rate = info.sampleRate;
meta.tracks[mId].channels = info.channels;
///\todo Fix this value
meta.tracks[mId].size = 0;
}break;
case AAC:{
meta.tracks[mId].type = "audio";
meta.tracks[mId].codec = "AAC";
meta.tracks[mId].trackID = mId;
meta.tracks[mId].size = 16;
meta.tracks[mId].rate = adtsInfo[it->first].getFrequency();
meta.tracks[mId].channels = adtsInfo[it->first].getChannelCount();
char audioInit[2]; // 5 bits object type, 4 bits frequency index, 4 bits channel index
audioInit[0] = ((adtsInfo[it->first].getAACProfile() & 0x1F) << 3) |
((adtsInfo[it->first].getFrequencyIndex() & 0x0E) >> 1);
audioInit[1] = ((adtsInfo[it->first].getFrequencyIndex() & 0x01) << 7) |
((adtsInfo[it->first].getChannelConfig() & 0x0F) << 3);
meta.tracks[mId].init = std::string(audioInit, 2);
}break;
}
size_t pmtCount = associationTable.getProgramCount();
for (size_t i = 0; i < pmtCount; i++){
uint32_t pid = associationTable.getProgramPID(i);
ProgramMappingEntry entry = mappingTable[pid].getEntry(0);
while (entry){
if (entry.getElementaryPid() == tid){
meta.tracks[mId].lang =
ProgramDescriptors(entry.getESInfo(), entry.getESInfoLength()).getLanguage();
}
entry.advance();
}
}
MEDIUM_MSG("Initialized track %lu as %s %s", it->first, meta.tracks[mId].codec.c_str(),
meta.tracks[mId].type.c_str());
}
}
std::set<size_t> Stream::getActiveTracks(){
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
std::set<size_t> result;
// Track 0 is always active
result.insert(0);
// IF PAT updated in the last 5 seconds, check for contents
if (Util::bootSecs() - lastPAT < 5){
size_t pmtCount = associationTable.getProgramCount();
// For each PMT
for (size_t i = 0; i < pmtCount; i++){
size_t pid = associationTable.getProgramPID(i);
// Add PMT track
result.insert(pid);
// IF PMT updated in last 5 seconds, check for contents
if (Util::bootSecs() - lastPMT[pid] < 5){
ProgramMappingEntry entry = mappingTable[pid].getEntry(0);
// Add all tracks in PMT
while (entry){
switch (entry.getStreamType()){
case H264:
case AAC:
case H265:
case AC3:
case ID3:
case MP2:
case MPEG2:
result.insert(entry.getElementaryPid()); break;
default: break;
}
entry.advance();
}
}
}
}
return result;
}
void Stream::eraseTrack(size_t tid){
tthread::lock_guard<tthread::recursive_mutex> guard(tMutex);
pesStreams.erase(tid);
pesPositions.erase(tid);
outPackets.erase(tid);
}
}