mistserver/lib/util.cpp
Marco 62b14d958d Moved string replace function from stream library to util library
Change-Id: Icea1eed11b241063af39d0c7cf23f1733f96012c
2023-01-24 01:40:41 +01:00

1058 lines
39 KiB
C++

// This line will make ftello/fseeko work with 64 bits numbers
#define _FILE_OFFSET_BITS 64
#include "bitfields.h"
#include "defines.h"
#include "dtsc.h"
#include "procs.h"
#include "timing.h"
#include "util.h"
#include <errno.h> // errno, ENOENT, EEXIST
#include <iomanip>
#include <iostream>
#include <stdio.h>
#include <sys/stat.h> // stat
#if defined(_WIN32)
#include <direct.h> // _mkdir
#endif
#include <stdlib.h>
#include <sys/resource.h>
#define RAXHDR_FIELDOFFSET p[1]
#define RAX_REQDFIELDS_LEN 36
// Converts the given record number into an offset of records after getOffset()'s offset.
// Does no bounds checking whatsoever, allowing access to not-yet-created or already-deleted
// records.
// This access method is stable with changing start/end positions and present record counts,
// because it only
// depends on the record count, which may not change for ring buffers.
#define RECORD_POINTER p + *hdrOffset + (((*hdrRecordCnt)?(recordNo % *hdrRecordCnt) : recordNo) * *hdrRecordSize) + fd.offset
namespace Util{
Util::DataCallback defaultDataCallback;
/// Helper function that cross-platform checks if a given directory exists.
bool isDirectory(const std::string &path){
#if defined(_WIN32)
struct _stat info;
if (_stat(path.c_str(), &info) != 0){return false;}
return (info.st_mode & _S_IFDIR) != 0;
#else
struct stat info;
if (stat(path.c_str(), &info) != 0){return false;}
return (info.st_mode & S_IFDIR) != 0;
#endif
}
bool createPathFor(const std::string &file){
int pos = file.find_last_of('/');
#if defined(_WIN32)
// Windows also supports backslashes as directory separator
if (pos == std::string::npos){pos = file.find_last_of('\\');}
#endif
if (pos == std::string::npos){
return true; // There is no parent
}
// Fail if we cannot create a parent
return createPath(file.substr(0, pos));
}
/// Helper function that will attempt to create the given path if it not yet exists.
/// Returns true if path exists or was successfully created, false otherwise.
bool createPath(const std::string &path){
#if defined(_WIN32)
int ret = _mkdir(path.c_str());
#else
mode_t mode = 0755;
int ret = mkdir(path.c_str(), mode);
#endif
if (ret == 0){// Success!
INFO_MSG("Created directory: %s", path.c_str());
return true;
}
switch (errno){
case ENOENT:{// Parent does not exist
int pos = path.find_last_of('/');
#if defined(_WIN32)
// Windows also supports backslashes as directory separator
if (pos == std::string::npos){pos = path.find_last_of('\\');}
#endif
if (pos == std::string::npos){
// fail if there is no parent
// Theoretically cannot happen, but who knows
FAIL_MSG("Could not create %s: %s", path.c_str(), strerror(errno));
return false;
}
// Fail if we cannot create a parent
if (!createPath(path.substr(0, pos))) return false;
#if defined(_WIN32)
ret = _mkdir(path.c_str());
#else
ret = mkdir(path.c_str(), mode);
#endif
if (ret){FAIL_MSG("Could not create %s: %s", path.c_str(), strerror(errno));}
return (ret == 0);
}
case EEXIST: // Is a file or directory
if (isDirectory(path)){
return true; // All good, already exists
}else{
FAIL_MSG("Not a directory: %s", path.c_str());
return false;
}
default: // Generic failure
FAIL_MSG("Could not create %s: %s", path.c_str(), strerror(errno));
return false;
}
}
bool stringScan(const std::string &src, const std::string &pattern, std::deque<std::string> &result){
result.clear();
std::deque<size_t> positions;
size_t pos = pattern.find("%", 0);
while (pos != std::string::npos){
positions.push_back(pos);
pos = pattern.find("%", pos + 1);
}
if (positions.size() == 0){return false;}
size_t sourcePos = 0;
size_t patternPos = 0;
std::deque<size_t>::iterator posIter = positions.begin();
while (sourcePos != std::string::npos){
// Match first part of the string
if (pattern.substr(patternPos, *posIter - patternPos) != src.substr(sourcePos, *posIter - patternPos)){
break;
}
sourcePos += *posIter - patternPos;
std::deque<size_t>::iterator nxtIter = posIter + 1;
if (nxtIter != positions.end()){
patternPos = *posIter + 2;
size_t tmpPos = src.find(pattern.substr(*posIter + 2, *nxtIter - patternPos), sourcePos);
result.push_back(src.substr(sourcePos, tmpPos - sourcePos));
sourcePos = tmpPos;
}else{
result.push_back(src.substr(sourcePos));
sourcePos = std::string::npos;
}
posIter++;
}
return result.size() == positions.size();
}
void stringToLower(std::string &val){
int i = 0;
while (val[i]){
val.at(i) = tolower(val.at(i));
i++;
}
}
/// Replaces any occurrences of 'from' with 'to' in 'str'.
void replace(std::string &str, const std::string &from, const std::string &to){
if (from.empty()){return;}
size_t start_pos = 0;
while ((start_pos = str.find(from, start_pos)) != std::string::npos){
str.replace(start_pos, from.length(), to);
start_pos += to.length();
}
}
//Returns the time to wait in milliseconds for exponential back-off waiting.
//If currIter > maxIter, always returns 5ms to prevent tight eternal loops when mistakes are made
//Otherwise, exponentially increases wait time for a total of maxWait milliseconds after maxIter calls.
//Wildly inaccurate for very short max durations and/or very large maxIter values, but otherwise works as expected.
int64_t expBackoffMs(const size_t currIter, const size_t maxIter, const int64_t maxWait){
if (currIter > maxIter){return 5;}
int64_t w = maxWait >> 1;
for (size_t i = maxIter; i > currIter; --i){
w >>= 1;
if (w < 2){w = 2;}
}
DONTEVEN_MSG("Waiting %" PRId64 " ms out of %" PRId64 " for iteration %zu/%zu", w, maxWait, currIter, maxIter);
return w;
}
/// 64-bits version of ftell
uint64_t ftell(FILE *stream){
/// \TODO Windows implementation (e.g. _ftelli64 ?)
return ftello(stream);
}
/// 64-bits version of fseek
uint64_t fseek(FILE *stream, uint64_t offset, int whence){
/// \TODO Windows implementation (e.g. _fseeki64 ?)
clearerr(stream);
return fseeko(stream, offset, whence);
}
ResizeablePointer::ResizeablePointer(){
currSize = 0;
ptr = 0;
maxSize = 0;
}
ResizeablePointer::~ResizeablePointer(){
if (ptr){free(ptr);}
currSize = 0;
ptr = 0;
maxSize = 0;
}
void ResizeablePointer::shift(size_t byteCount){
//Shifting the entire buffer is easy, we do nothing and set size to zero
if (byteCount >= currSize){
currSize = 0;
return;
}
//Shifting partial needs a memmove and size change
memmove(ptr, ((char*)ptr)+byteCount, currSize-byteCount);
currSize -= byteCount;
}
bool ResizeablePointer::assign(const void *p, uint32_t l){
if (!allocate(l)){return false;}
memcpy(ptr, p, l);
currSize = l;
return true;
}
bool ResizeablePointer::assign(const std::string &str){
return assign(str.data(), str.length());
}
bool ResizeablePointer::append(const void *p, uint32_t l){
// We're writing from null pointer - assume outside write (e.g. fread or socket operation) and update the size
if (!p){
if (currSize + l > maxSize){
FAIL_MSG("Pointer write went beyond allocated size! Memory corruption likely.");
BACKTRACE;
return false;
}
currSize += l;
return true;
}
if (!allocate(l + currSize)){return false;}
memcpy(((char *)ptr) + currSize, p, l);
currSize += l;
return true;
}
bool ResizeablePointer::append(const std::string &str){
return append(str.data(), str.length());
}
bool ResizeablePointer::allocate(uint32_t l){
if (l > maxSize){
void *tmp = realloc(ptr, l);
if (!tmp){
FAIL_MSG("Could not allocate %" PRIu32 " bytes of memory", l);
return false;
}
ptr = tmp;
maxSize = l;
}
return true;
}
/// Returns amount of space currently reserved for this pointer
uint32_t ResizeablePointer::rsize(){return maxSize;}
void ResizeablePointer::truncate(const size_t newLen){
if (currSize > newLen){currSize = newLen;}
}
/// Redirects stderr to log parser, writes log parser to the old stderr.
/// Does nothing if the MIST_CONTROL environment variable is set.
void redirectLogsIfNeeded(){
// The controller sets this environment variable.
// We don't do anything if set, since the controller wants the messages raw.
if (getenv("MIST_CONTROL")){return;}
setenv("MIST_CONTROL", "1", 1);
// Okay, we're stand-alone, lets do some parsing!
int true_stderr = dup(STDERR_FILENO);
int pipeErr[2];
if (pipe(pipeErr) >= 0){
// Start reading log messages from the unnamed pipe
Util::Procs::fork_prepare();
pid_t pid = fork();
if (pid == 0){// child
Util::Procs::fork_complete();
close(pipeErr[1]); // close the unneeded pipe file descriptor
// Close all sockets in the socketList
for (std::set<int>::iterator it = Util::Procs::socketList.begin();
it != Util::Procs::socketList.end(); ++it){
close(*it);
}
close(2);
struct sigaction new_action;
new_action.sa_handler = SIG_IGN;
sigemptyset(&new_action.sa_mask);
new_action.sa_flags = 0;
sigaction(SIGINT, &new_action, NULL);
sigaction(SIGHUP, &new_action, NULL);
sigaction(SIGTERM, &new_action, NULL);
sigaction(SIGPIPE, &new_action, NULL);
Util::logParser(pipeErr[0], true_stderr, isatty(true_stderr));
exit(0);
}
Util::Procs::fork_complete();
if (pid == -1){
FAIL_MSG("Failed to fork child process for log handling!");
}else{
dup2(pipeErr[1], STDERR_FILENO); // cause stderr to write to the pipe
}
close(pipeErr[1]); // close the unneeded pipe file descriptor
close(pipeErr[0]);
close(true_stderr);
}
}
/// Parses log messages from the given file descriptor in, printing them to out, optionally
/// calling the given callback for each valid message. Closes the file descriptor on read error
void logParser(int in, int out, bool colored,
void callback(const std::string &, const std::string &, const std::string &, uint64_t, bool)){
if (getenv("MIST_COLOR")){colored = true;}
bool sysd_log = getenv("MIST_LOG_SYSTEMD");
char *color_time, *color_msg, *color_end, *color_strm, *CONF_msg, *FAIL_msg, *ERROR_msg,
*WARN_msg, *INFO_msg;
if (colored){
color_end = (char *)"\033[0m";
if (getenv("MIST_COLOR_END")){color_end = getenv("MIST_COLOR_END");}
color_strm = (char *)"\033[0m";
if (getenv("MIST_COLOR_STREAM")){color_strm = getenv("MIST_COLOR_STREAM");}
color_time = (char *)"\033[2m";
if (getenv("MIST_COLOR_TIME")){color_time = getenv("MIST_COLOR_TIME");}
CONF_msg = (char *)"\033[0;1;37m";
if (getenv("MIST_COLOR_CONF")){CONF_msg = getenv("MIST_COLOR_CONF");}
FAIL_msg = (char *)"\033[0;1;31m";
if (getenv("MIST_COLOR_FAIL")){FAIL_msg = getenv("MIST_COLOR_FAIL");}
ERROR_msg = (char *)"\033[0;31m";
if (getenv("MIST_COLOR_ERROR")){ERROR_msg = getenv("MIST_COLOR_ERROR");}
WARN_msg = (char *)"\033[0;1;33m";
if (getenv("MIST_COLOR_WARN")){WARN_msg = getenv("MIST_COLOR_WARN");}
INFO_msg = (char *)"\033[0;36m";
if (getenv("MIST_COLOR_INFO")){INFO_msg = getenv("MIST_COLOR_INFO");}
}else{
color_end = (char *)"";
color_strm = (char *)"";
color_time = (char *)"";
CONF_msg = (char *)"";
FAIL_msg = (char *)"";
ERROR_msg = (char *)"";
WARN_msg = (char *)"";
INFO_msg = (char *)"";
}
Socket::Connection O(-1, in);
O.setBlocking(true);
Util::ResizeablePointer buf;
while (O){
if (O.spool()){
while (O.Received().size()){
std::string & t = O.Received().get();
buf.append(t);
if (buf.size() && (buf.size() > 1024 || *t.rbegin() == '\n')){
unsigned int i = 0;
char *kind = buf; // type of message, at begin of string
char *progname = 0;
char *progpid = 0;
char *lineno = 0;
char *strmNm = 0;
char *message = 0;
while (i < 9 && buf[i] != '|' && buf[i] != 0 && buf[i] < 128){++i;}
if (buf[i] != '|'){
// on parse error, skip to next message
t.clear();
buf.truncate(0);
continue;
}
buf[i] = 0; // insert null byte
++i;
progname = buf + i; // progname starts here
while (i < 40 && buf[i] != '|' && buf[i] != 0){++i;}
if (buf[i] != '|'){
// on parse error, skip to next message
t.clear();
buf.truncate(0);
continue;
}
buf[i] = 0; // insert null byte
++i;
progpid = buf + i; // progpid starts here
while (i < 60 && buf[i] != '|' && buf[i] != 0){++i;}
if (buf[i] != '|'){
// on parse error, skip to next message
t.clear();
buf.truncate(0);
continue;
}
buf[i] = 0; // insert null byte
++i;
lineno = buf + i; // lineno starts here
while (i < 180 && buf[i] != '|' && buf[i] != 0){++i;}
if (buf[i] != '|'){
// on parse error, skip to next message
t.clear();
buf.truncate(0);
continue;
}
buf[i] = 0; // insert null byte
++i;
strmNm = buf + i; // stream name starts here
while (i < 380 && buf[i] != '|' && buf[i] != 0){++i;}
if (buf[i] != '|'){
// on parse error, skip to next message
t.clear();
buf.truncate(0);
continue;
}
buf[i] = 0; // insert null byte
++i;
message = buf + i; // message starts here
// insert null byte for end of line
buf[buf.size()-1] = 0;
// print message
if (callback){callback(kind, message, strmNm, JSON::Value(progpid).asInt(), true);}
color_msg = color_end;
if (colored){
if (!strcmp(kind, "CONF")){color_msg = CONF_msg;}
if (!strcmp(kind, "FAIL")){color_msg = FAIL_msg;}
if (!strcmp(kind, "ERROR")){color_msg = ERROR_msg;}
if (!strcmp(kind, "WARN")){color_msg = WARN_msg;}
if (!strcmp(kind, "INFO")){color_msg = INFO_msg;}
}
if (sysd_log){
if (!strcmp(kind, "CONF")){dprintf(out, "<5>");}
if (!strcmp(kind, "FAIL")){dprintf(out, "<0>");}
if (!strcmp(kind, "ERROR")){dprintf(out, "<1>");}
if (!strcmp(kind, "WARN")){dprintf(out, "<2>");}
if (!strcmp(kind, "INFO")){dprintf(out, "<5>");}
if (!strcmp(kind, "VERYHIGH") || !strcmp(kind, "EXTREME") || !strcmp(kind, "INSANE") || !strcmp(kind, "DONTEVEN")){
dprintf(out, "<7>");
}
}else{
time_t rawtime;
struct tm *timeinfo;
struct tm timetmp;
char buffer[100];
time(&rawtime);
timeinfo = localtime_r(&rawtime, &timetmp);
strftime(buffer, 100, "%F %H:%M:%S", timeinfo);
dprintf(out, "%s[%s] ", color_time, buffer);
}
if (progname && progpid && strlen(progname) && strlen(progpid)){
if (strmNm && strlen(strmNm)){
dprintf(out, "%s:%s%s%s (%s) ", progname, color_strm, strmNm, color_time, progpid);
}else{
dprintf(out, "%s (%s) ", progname, progpid);
}
}else{
if (strmNm && strlen(strmNm)){dprintf(out, "%s%s%s ", color_strm, strmNm, color_time);}
}
dprintf(out, "%s%s: %s%s", color_msg, kind, message, color_end);
if (lineno && strlen(lineno)){dprintf(out, " (%s) ", lineno);}
dprintf(out, "\n");
buf.truncate(0);
}
t.clear();
}
}else{
Util::sleep(50);
}
}
close(out);
close(in);
}
FieldAccX::FieldAccX(RelAccX *_src, RelAccXFieldData _field) : src(_src), field(_field){}
uint64_t FieldAccX::uint(size_t recordNo) const{return src->getInt(field, recordNo);}
std::string FieldAccX::string(size_t recordNo) const{
return std::string(src->getPointer(field, recordNo));
}
const char * FieldAccX::ptr(size_t recordNo) const{
return src->getPointer(field, recordNo);
}
void FieldAccX::set(uint64_t val, size_t recordNo){src->setInt(field, val, recordNo);}
void FieldAccX::set(const std::string &val, size_t recordNo){
char *place = src->getPointer(field, recordNo);
memcpy(place, val.data(), std::min((size_t)field.size, val.size()));
if ((field.type & 0xF0) == RAX_STRING){
place[std::min((size_t)field.size - 1, val.size())] = 0;
}
}
/// If waitReady is true (default), waits for isReady() to return true in 50ms sleep increments.
RelAccX::RelAccX(char *data, bool waitReady){
if (!data){
p = 0;
return;
}
p = data;
hdrRecordCnt = (uint32_t*)(p+2);
hdrRecordSize = (uint32_t*)(p+6);
hdrStartPos = (uint32_t*)(p+10);
hdrDeleted = (uint64_t*)(p+14);
hdrPresent = (uint32_t*)(p+22);
hdrOffset = (uint16_t*)(p+26);
hdrEndPos = (uint64_t*)(p+28);
if (waitReady){
uint64_t maxWait = Util::bootMS() + 10000;
while (!isReady()){
if (Util::bootMS() > maxWait){
FAIL_MSG("Waiting for RelAccX structure to be ready timed out, aborting");
p = 0;
return;
}
Util::sleep(50);
}
}
if (isReady()){
uint16_t offset = RAXHDR_FIELDOFFSET;
if (offset < 11 || offset >= getOffset()){
FAIL_MSG("Invalid field offset: %u", offset);
p = 0;
return;
}
uint64_t dataOffset = 0;
while (offset < getOffset()){
const uint8_t sizeByte = p[offset];
const uint8_t nameLen = sizeByte >> 3;
const uint8_t typeLen = sizeByte & 0x7;
const uint8_t fieldType = p[offset + 1 + nameLen];
const std::string fieldName(p + offset + 1, nameLen);
uint32_t size = 0;
switch (typeLen){
case 1: // derived from field type
if ((fieldType & 0xF0) == RAX_UINT || (fieldType & 0xF0) == RAX_INT){
// Integer types - lower 4 bits +1 are size in bytes
size = (fieldType & 0x0F) + 1;
}else{
if ((fieldType & 0xF0) == RAX_STRING || (fieldType & 0xF0) == RAX_RAW){
// String types - 8*2^(lower 4 bits) is size in bytes
size = 16 << (fieldType & 0x0F);
}else{
WARN_MSG("Unhandled field type!");
}
}
break;
// Simple sizes in bytes
case 2: size = p[offset + 1 + nameLen + 1]; break;
case 3: size = *(uint16_t *)(p + offset + 1 + nameLen + 1); break;
case 4: size = Bit::btoh24(p + offset + 1 + nameLen + 1); break;
case 5: size = *(uint32_t *)(p + offset + 1 + nameLen + 1); break;
default: WARN_MSG("Unhandled field data size!"); break;
}
fields[fieldName] = RelAccXFieldData(fieldType, size, dataOffset);
DONTEVEN_MSG("Field %s: type %u, size %" PRIu32 ", offset %" PRIu64, fieldName.c_str(),
fieldType, size, dataOffset);
dataOffset += size;
offset += nameLen + typeLen + 1;
}
}
}
/// Gets the amount of records present in the structure.
uint32_t RelAccX::getRCount() const{return *hdrRecordCnt;}
/// Gets the size in bytes of a single record in the structure.
uint32_t RelAccX::getRSize() const{return *hdrRecordSize;}
/// Gets the position in the records where the entries start
uint32_t RelAccX::getStartPos() const{return *hdrStartPos;}
/// Gets the number of deleted records
uint64_t RelAccX::getDeleted() const{return *hdrDeleted;}
/// Gets the number of records present
size_t RelAccX::getPresent() const{return *hdrPresent;}
/// Gets the number of the last valid index
uint64_t RelAccX::getEndPos() const{return *hdrEndPos;}
/// Gets the number of fields per recrd
uint32_t RelAccX::getFieldCount() const{return fields.size();}
/// Gets the offset from the structure start where records begin.
uint16_t RelAccX::getOffset() const{return *hdrOffset;}
/// Returns true if the structure is ready for read operations.
bool RelAccX::isReady() const{return p && (p[0] & 1);}
/// Returns true if the structure will no longer be updated.
bool RelAccX::isExit() const{return !p || (p[0] & 2);}
/// Returns true if the structure should be reloaded through out of band means.
bool RelAccX::isReload() const{return !p || (p[0] & 4);}
/// Returns true if the given record number can be accessed.
bool RelAccX::isRecordAvailable(uint64_t recordNo) const{
// Check if the record has been deleted
if (getDeleted() > recordNo){return false;}
// Check if the record hasn't been created yet
if (recordNo >= getEndPos()){return false;}
return true;
}
/// Returns the (max) size of the given field.
/// For string types, returns the exact size excluding terminating null byte.
/// For other types, returns the maximum size possible.
/// Returns 0 if the field does not exist.
uint32_t RelAccX::getSize(const std::string &name, uint64_t recordNo) const{
if (!isRecordAvailable(recordNo)){return 0;}
std::map<std::string, RelAccXFieldData>::const_iterator it = fields.find(name);
if (it == fields.end()){return 0;}
const RelAccXFieldData &fd = it->second;
if ((fd.type & 0xF0) == RAX_STRING){return strnlen(RECORD_POINTER, fd.size);}
return fd.size;
}
/// Returns a pointer to the given field in the given record number.
/// Returns a null pointer if the field does not exist.
char *RelAccX::getPointer(const std::string &name, uint64_t recordNo) const{
std::map<std::string, RelAccXFieldData>::const_iterator it = fields.find(name);
if (it == fields.end()){return 0;}
return getPointer(it->second, recordNo);
}
char *RelAccX::getPointer(const RelAccXFieldData &fd, uint64_t recordNo) const{
return RECORD_POINTER;
}
/// Returns the value of the given integer-type field in the given record, as an uint64_t type.
/// Returns 0 if the field does not exist or is not an integer type.
uint64_t RelAccX::getInt(const std::string &name, uint64_t recordNo) const{
std::map<std::string, RelAccXFieldData>::const_iterator it = fields.find(name);
if (it == fields.end()){return 0;}
return getInt(it->second, recordNo);
}
uint64_t RelAccX::getInt(const RelAccXFieldData &fd, uint64_t recordNo) const{
char *ptr = RECORD_POINTER;
if ((fd.type & 0xF0) == RAX_UINT){// unsigned int
switch (fd.size){
case 1: return *(uint8_t *)ptr;
case 2: return *(uint16_t *)ptr;
case 3: return Bit::btoh24(ptr);
case 4: return *(uint32_t *)ptr;
case 8: return *(uint64_t *)ptr;
default: WARN_MSG("Unimplemented integer");
}
}
if ((fd.type & 0xF0) == RAX_INT){// signed int
switch (fd.size){
case 1: return *(int8_t *)ptr;
case 2: return *(int16_t *)ptr;
case 3: return Bit::btoh24(ptr);
case 4: return *(int32_t *)ptr;
case 8: return *(int64_t *)ptr;
default: WARN_MSG("Unimplemented integer");
}
}
return 0; // Not an integer type, or not implemented
}
std::string RelAccX::toPrettyString(size_t indent) const{
std::stringstream r;
uint64_t delled = getDeleted();
uint64_t max = getEndPos();
if (max - delled > getRCount()){max = delled + getRCount();}
if (max == 0){max = getRCount();}
r << std::string(indent, ' ') << "RelAccX: " << getRCount() << " x " << getRSize() << "b @"
<< getOffset() << " (#" << getDeleted() << " - #" << getEndPos() - 1 << ")" << std::endl;
for (uint64_t i = delled; i < max; ++i){
r << std::string(indent + 2, ' ') << "#" << i << ":" << std::endl;
for (std::map<std::string, RelAccXFieldData>::const_iterator it = fields.begin();
it != fields.end(); ++it){
r << std::string(indent + 4, ' ') << it->first << ": ";
switch (it->second.type & 0xF0){
case RAX_INT: r << (int64_t)getInt(it->first, i) << std::endl; break;
case RAX_UINT: r << getInt(it->first, i) << std::endl; break;
case RAX_STRING: r << getPointer(it->first, i) << std::endl; break;
case 0:{// RAX_NESTED
RelAccX n(getPointer(it->first, i), false);
if (n.isReady()){
r << "Nested RelAccX:" << std::endl;
r << (n.getFieldCount() > 6 ? n.toPrettyString(indent + 6) : n.toCompactString(indent + 6));
}else{
r << "Nested RelAccX: not ready" << std::endl;
}
break;
}
case RAX_RAW:{
char *ptr = getPointer(it->first, i);
size_t sz = getSize(it->first, i);
size_t zeroCount = 0;
for (size_t j = 0; j < sz && j < 100 && zeroCount < 16; ++j){
r << "0x" << std::hex << std::setw(2) << std::setfill('0') << (int)ptr[j] << std::dec << " ";
if (ptr[j] == 0x00){
zeroCount++;
}else{
zeroCount = 0;
}
}
r << std::endl;
break;
}
case RAX_DTSC:{
char *ptr = getPointer(it->first, i);
size_t sz = getSize(it->first, i);
r << std::endl;
r << DTSC::Scan(ptr, sz).toPrettyString(indent + 6) << std::endl;
break;
}
default: r << "[UNIMPLEMENTED]" << std::endl; break;
}
}
}
return r.str();
}
std::string RelAccX::toCompactString(size_t indent) const{
std::stringstream r;
uint64_t delled = getDeleted();
uint64_t max = getEndPos();
r << std::string(indent, ' ') << "RelAccX: " << getRCount() << " x " << getRSize() << "b @"
<< getOffset() << " (#" << getDeleted() << " - #" << getEndPos() - 1 << ")" << std::endl;
for (uint64_t i = delled; i < max; ++i){
r << std::string(indent + 2, ' ') << "#" << i << ": ";
for (std::map<std::string, RelAccXFieldData>::const_iterator it = fields.begin();
it != fields.end(); ++it){
r << it->first << ": ";
switch (it->second.type & 0xF0){
case RAX_INT: r << (int64_t)getInt(it->first, i) << ", "; break;
case RAX_UINT: r << getInt(it->first, i) << ", "; break;
case RAX_STRING: r << getPointer(it->first, i) << ", "; break;
case 0:{// RAX_NESTED
RelAccX n(getPointer(it->first, i), false);
if (n.isReady()){
r << (n.getFieldCount() > 6 ? n.toPrettyString(indent + 2) : n.toCompactString(indent + 2));
}else{
r << "Nested RelAccX not ready" << std::endl;
}
break;
}
default: r << "[UNIMPLEMENTED], "; break;
}
}
r << std::endl;
}
return r.str();
}
/// Returns the default size in bytes of the data component of a field type number.
/// Returns zero if not implemented, unknown or the type has no default.
uint32_t RelAccX::getDefaultSize(uint8_t fType){
if ((fType & 0XF0) == RAX_INT || (fType & 0XF0) == RAX_UINT){
return (fType & 0x0F) + 1; // Default size is lower 4 bits plus one bytes
}
if ((fType & 0XF0) == RAX_STRING || (fType & 0XF0) == RAX_RAW){
return 16 << (fType & 0x0F); // Default size is 16 << (lower 4 bits) bytes
}
return 0;
}
/// Adds a new field to the internal list of fields.
/// Can only be called if not ready, exit or reload.
/// Changes the offset and record size to match.
/// Fails if called multiple times with the same field name.
void RelAccX::addField(const std::string &name, uint8_t fType, uint32_t fLen){
if (isExit() || isReload() || isReady()){
WARN_MSG("Attempting to add a field to a non-writeable memory area");
return;
}
if (!name.size() || name.size() > 31){
WARN_MSG("Attempting to add a field with illegal name: %s (%zu chars)", name.c_str(), name.size());
return;
}
// calculate fLen if missing
if (!fLen){
fLen = getDefaultSize(fType);
if (!fLen){
WARN_MSG("Attempting to add a mandatory-size field without size");
return;
}
}
// We now know for sure fLen is set
// Get current offset and record size
// The first field initializes the offset and record size.
if (!fields.size()){
*hdrRecordSize = 0; // Nothing yet, this is the first data field.
*hdrOffset = RAX_REQDFIELDS_LEN; // All mandatory fields are first - so we start there.
RAXHDR_FIELDOFFSET = *hdrOffset; // store the field_offset
}
uint8_t typeLen = 1;
// Check if fLen is a non-default value
if (getDefaultSize(fType) != fLen){
// Calculate the smallest size integer we can fit this in
typeLen = 5; // 32 bit
if (fLen < 0x10000){typeLen = 3;}// 16 bit
if (fLen < 0x100){typeLen = 2;}// 8 bit
}
// store the details for internal use
// recSize is the field offset, since we haven't updated it yet
fields[name] = RelAccXFieldData(fType, fLen, *hdrRecordSize);
// write the data to memory
p[*hdrOffset] = (name.size() << 3) | (typeLen & 0x7);
memcpy(p + (*hdrOffset) + 1, name.data(), name.size());
p[(*hdrOffset) + 1 + name.size()] = fType;
if (typeLen == 2){*(uint8_t *)(p + (*hdrOffset) + 2 + name.size()) = fLen;}
if (typeLen == 3){*(uint16_t *)(p + (*hdrOffset) + 2 + name.size()) = fLen;}
if (typeLen == 5){*(uint32_t *)(p + (*hdrOffset) + 2 + name.size()) = fLen;}
// Calculate new offset and record size
*hdrOffset += 1 + name.size() + typeLen;
*hdrRecordSize += fLen;
}
/// Sets the record counter to the given value.
void RelAccX::setRCount(uint32_t count){*hdrRecordCnt = count;}
/// Sets the position in the records where the entries start
void RelAccX::setStartPos(uint32_t n){*hdrStartPos = n;}
/// Sets the number of deleted records
void RelAccX::setDeleted(uint64_t n){*hdrDeleted = n;}
/// Sets the number of records present
/// Defaults to the record count if set to zero.
void RelAccX::setPresent(uint32_t n){*hdrPresent = n;}
/// Sets the number of the last valid index
void RelAccX::setEndPos(uint64_t n){*hdrEndPos = n;}
/// Sets the ready flag.
/// After calling this function, addField() may no longer be called.
/// Fails if exit, reload or ready are (already) set.
void RelAccX::setReady(){
if (isExit() || isReload() || isReady()){
WARN_MSG("Could not set ready on structure with pre-existing state");
return;
}
p[0] |= 1;
}
// Sets the exit flag.
/// After calling this function, addField() may no longer be called.
void RelAccX::setExit(){p[0] |= 2;}
// Sets the reload flag.
/// After calling this function, addField() may no longer be called.
void RelAccX::setReload(){p[0] |= 4;}
/// Writes the given string to the given field in the given record.
/// Fails if ready is not set.
/// Ensures the last byte is always a zero.
void RelAccX::setString(const std::string &name, const std::string &val, uint64_t recordNo){
std::map<std::string, RelAccXFieldData>::const_iterator it = fields.find(name);
if (it == fields.end()){
WARN_MSG("Setting non-existent string %s", name.c_str());
return;
}
setString(it->second, val, recordNo);
}
void RelAccX::setString(const RelAccXFieldData &fd, const std::string &val, uint64_t recordNo){
if ((fd.type & 0xF0) != RAX_STRING && (fd.type & 0xF0) != RAX_RAW){
WARN_MSG("Setting non-string data type to a string value");
return;
}
char *ptr = RECORD_POINTER;
memcpy(ptr, val.data(), std::min((uint32_t)val.size(), fd.size));
if ((fd.type & 0xF0) == RAX_STRING){ptr[std::min((uint32_t)val.size(), fd.size - 1)] = 0;}
}
/// Writes the given int to the given field in the given record.
/// Fails if ready is not set or the field is not an integer type.
void RelAccX::setInt(const std::string &name, uint64_t val, uint64_t recordNo){
std::map<std::string, RelAccXFieldData>::const_iterator it = fields.find(name);
if (it == fields.end()){
WARN_MSG("Setting non-existent integer %s", name.c_str());
return;
}
setInt(it->second, val, recordNo);
}
void RelAccX::setInt(const RelAccXFieldData &fd, uint64_t val, uint64_t recordNo){
char *ptr = RECORD_POINTER;
if ((fd.type & 0xF0) == RAX_UINT){// unsigned int
switch (fd.size){
case 1: *(uint8_t *)ptr = val; return;
case 2: *(uint16_t *)ptr = val; return;
case 3: Bit::htob24(ptr, val); return;
case 4: *(uint32_t *)ptr = val; return;
case 8: *(uint64_t *)ptr = val; return;
default: WARN_MSG("Unimplemented integer size %u", fd.size); return;
}
}
if ((fd.type & 0xF0) == RAX_INT){// signed int
switch (fd.size){
case 1: *(int8_t *)ptr = (int64_t)val; return;
case 2: *(int16_t *)ptr = (int64_t)val; return;
case 3: Bit::htob24(ptr, val); return;
case 4: *(int32_t *)ptr = (int64_t)val; return;
case 8: *(int64_t *)ptr = (int64_t)val; return;
default: WARN_MSG("Unimplemented integer size %u", fd.size); return;
}
}
WARN_MSG("Setting non-integer field (%u) to integer value!", fd.type);
}
/// Writes the given int to the given field in the given record.
/// Fails if ready is not set or the field is not an integer type.
void RelAccX::setInts(const std::string &name, uint64_t *values, size_t len){
std::map<std::string, RelAccXFieldData>::const_iterator it = fields.find(name);
if (it == fields.end()){
WARN_MSG("Setting non-existent integer %s", name.c_str());
return;
}
const RelAccXFieldData &fd = it->second;
for (uint64_t recordNo = 0; recordNo < len; recordNo++){
setInt(fd, values[recordNo], recordNo);
}
}
/// Updates the deleted record counter, the start position and the present record counter,
/// shifting the ring buffer start position forward without moving the ring buffer end position.
void RelAccX::deleteRecords(uint32_t amount){
*hdrStartPos += amount; // update start position
*hdrDeleted += amount; // update deleted record counter
if (*hdrPresent >= amount){
*hdrPresent -= amount; // decrease records present
}else{
BACKTRACE;
WARN_MSG("Depleting recordCount!");
exit(1);
*hdrPresent = 0;
}
}
/// Updates the present record counter, shifting the ring buffer end position forward without
/// moving the ring buffer start position.
void RelAccX::addRecords(uint32_t amount){
if ((*hdrEndPos) + amount - *hdrDeleted > *hdrRecordCnt){
BACKTRACE;
WARN_MSG("Exceeding recordCount (%" PRIu64 " [%" PRIu64 " + %" PRIu32 " - %" PRIu64 "] > %" PRIu32 ")", (*hdrEndPos) + amount - (*hdrDeleted), *hdrEndPos, amount, *hdrDeleted, *hdrRecordCnt);
*hdrPresent = 0;
}else{
*hdrPresent += amount;
}
*hdrEndPos += amount;
}
void RelAccX::minimalFrom(const RelAccX &src){
copyFieldsFrom(src, true);
uint64_t rCount = src.getPresent();
setRCount(rCount);
setReady();
addRecords(rCount);
flowFrom(src);
}
void RelAccX::copyFieldsFrom(const RelAccX &src, bool minimal){
fields.clear();
if (!minimal){
for (std::map<std::string, RelAccXFieldData>::const_iterator it = src.fields.begin();
it != src.fields.end(); it++){
addField(it->first, it->second.type, it->second.size);
}
return;
}
for (std::map<std::string, RelAccXFieldData>::const_iterator it = src.fields.begin();
it != src.fields.end(); it++){
switch (it->second.type & 0xF0){
case 0x00: // nested RelAccX
{
uint64_t maxSize = 0;
for (int i = 0; i < src.getPresent(); i++){
Util::RelAccX child(src.getPointer(it->first, i), false);
char *tmpBuf = (char *)malloc(src.getOffset() + (src.getRCount() * src.getRSize()));
Util::RelAccX minChild(tmpBuf, false);
minChild.minimalFrom(child);
uint64_t thisSize = minChild.getOffset() + (minChild.getRSize() * minChild.getPresent());
maxSize = std::max(thisSize, maxSize);
free(tmpBuf);
}
addField(it->first, it->second.type, maxSize);
}break;
default: addField(it->first, it->second.type, it->second.size); break;
}
}
}
void RelAccX::flowFrom(const RelAccX &src){
uint64_t rCount = src.getPresent();
if (getRCount() == 0){setRCount(rCount);}
if (rCount > getRCount()){
FAIL_MSG("Abandoning reflow, target does not have enough records available (%" PRIu64
" records, %d available)",
rCount, getRCount());
return;
}
addRecords(rCount - getPresent());
for (int i = 0; i < rCount; i++){
for (std::map<std::string, RelAccXFieldData>::const_iterator it = src.fields.begin();
it != src.fields.end(); it++){
if (!fields.count(it->first)){
INFO_MSG("Field %s in source but not in target", it->first.c_str());
continue;
}
switch (it->second.type & 0xF0){
case RAX_RAW:
memcpy(getPointer(it->first, i), src.getPointer(it->first, i),
std::min(it->second.size, fields.at(it->first).size));
break;
case RAX_INT:
case RAX_UINT: setInt(it->first, src.getInt(it->first, i), i); break;
case RAX_STRING: setString(it->first, src.getPointer(it->first, i), i); break;
case 0x00: // nested RelAccX
{
Util::RelAccX srcChild(src.getPointer(it->first, i), false);
Util::RelAccX child(getPointer(it->first, i), false);
child.flowFrom(srcChild);
}break;
default: break;
}
}
}
}
FieldAccX RelAccX::getFieldAccX(const std::string &fName){
if (!fields.count(fName)){return FieldAccX();}
return FieldAccX(this, fields.at(fName));
}
RelAccXFieldData RelAccX::getFieldData(const std::string &fName) const{
if (!fields.count(fName)){return RelAccXFieldData();}
return fields.at(fName);
}
bool sysSetNrOpenFiles(int n){
struct rlimit limit;
if (getrlimit(RLIMIT_NOFILE, &limit) != 0) {
FAIL_MSG("Could not get open file limit: %s", strerror(errno));
return false;
}
int currLimit = limit.rlim_cur;
if(limit.rlim_cur < n){
limit.rlim_cur = n;
if (setrlimit(RLIMIT_NOFILE, &limit) != 0) {
FAIL_MSG("Could not set open file limit from %d to %d: %s", currLimit, n, strerror(errno));
return false;
}
HIGH_MSG("Open file limit increased from %d to %d", currLimit, n)
}
return true;
}
}// namespace Util