mistserver/lib/auth.cpp

337 lines
15 KiB
C++

#include "auth.h"
#include <string.h>
#include <stdio.h>
#include <inttypes.h>
#include <sstream>
#include <iomanip>
namespace Secure {
/// Calculates a MD5 digest as per rfc1321, returning it as a hexadecimal alphanumeric string.
std::string md5(std::string input) {
return md5(input.data(), input.size());
}
/// Calculates a MD5 digest as per rfc1321, returning it as a hexadecimal alphanumeric string.
std::string md5(const char * input, const unsigned int in_len){
char output[16];
md5bin(input, in_len, output);
std::stringstream outStr;
for (unsigned int i = 0; i < 16; ++i){
outStr << std::hex << std::setw(2) << std::setfill('0') << (unsigned int)(output[i] & 0xff);
}
return outStr.str();
}
/// Calculates a SHA256 digest as per NSAs SHA-2, returning it as a hexadecimal alphanumeric string.
std::string sha256(std::string input) {
return sha256(input.data(), input.size());
}
/// Calculates a SHA256 digest as per NSAs SHA-2, returning it as a hexadecimal alphanumeric string.
std::string sha256(const char * input, const unsigned int in_len){
char output[32];
sha256bin(input, in_len, output);
std::stringstream outStr;
for (unsigned int i = 0; i < 32; ++i){
outStr << std::hex << std::setw(2) << std::setfill('0') << (unsigned int)(output[i] & 0xff);
}
return outStr.str();
}
/// Adds 64 bytes of data to the current MD5 hash.
/// hash is the current hash, represented by 4 unsigned longs.
/// data is the 64 bytes of data that need to be added.
static inline void md5_add64(uint32_t * hash, const char * data){
//Inspired by the pseudocode as available on Wikipedia on March 2nd, 2015.
uint32_t M[16];
for (unsigned int i = 0; i < 16; ++i){
M[i] = data[i << 2] | (data[(i<<2)+1] << 8) | (data[(i<<2)+2] << 16) | (data[(i<<2)+3] << 24);
}
static unsigned char shift[] = {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21};
static uint32_t K[] = { 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8, 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391};
uint32_t A = hash[0];
uint32_t B = hash[1];
uint32_t C = hash[2];
uint32_t D = hash[3];
for (unsigned int i = 0; i < 64; ++i){
uint32_t F, g;
if (i < 16){
F = (B & C) | ((~B) & D);
g = i;
}else if (i < 32){
F = (D & B) | ((~D) & C);
g = (5*i + 1) % 16;
}else if (i < 48){
F = B ^ C ^ D;
g = (3*i + 5) % 16;
}else{
F = C ^ (B | (~D));
g = (7*i) % 16;
}
uint32_t dTemp = D;
D = C;
C = B;
uint32_t x = A + F + K[i] + M[g];
B += (x << shift[i] | (x >> (32-shift[i])));
A = dTemp;
}
hash[0] += A;
hash[1] += B;
hash[2] += C;
hash[3] += D;
}
/// Calculates a MD5 digest as per rfc1321, returning it as binary.
/// Assumes output is big enough to contain 16 bytes of data.
void md5bin(const char * input, const unsigned int in_len, char * output){
//Initialize the hash, according to MD5 spec.
uint32_t hash[] = {0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476};
//Add as many whole blocks of 64 bytes as possible from the input, until < 64 are left.
unsigned int offset = 0;
while (offset+64 <= in_len){
md5_add64(hash, input+offset);
offset += 64;
}
//now, copy the remainder to a 64 byte buffer.
char buffer[64];
memcpy(buffer, input+offset, in_len-offset);
//Calculate how much we've filled in that buffer
offset = in_len - offset;
//We know at least 1 byte must be empty, so we can safely do this
buffer[offset] = 0x80;//append 0x80
//fill to the end of the buffer with zeroes
memset(buffer+offset+1, 0, 64-offset-1);
if (offset > 55){
//There's no space for the length, add what we have and zero it
md5_add64(hash, buffer);
memset(buffer, 0, 64);
}
unsigned long long bit_len = in_len << 3;
//Write the length into the last 8 bytes
buffer[56] = (bit_len >> 0) & 0xff;
buffer[57] = (bit_len >> 8) & 0xff;
buffer[58] = (bit_len >> 16) & 0xff;
buffer[59] = (bit_len >> 24) & 0xff;
buffer[60] = (bit_len >> 32) & 0xff;
buffer[61] = (bit_len >> 40) & 0xff;
buffer[62] = (bit_len >> 48) & 0xff;
buffer[63] = (bit_len >> 54) & 0xff;
//Add the last bit of buffer
md5_add64(hash, buffer);
//Write to output
//convert hash to hexadecimal string
output[0 ] = (hash[0] >> 0 ) & 0xff;
output[1 ] = (hash[0] >> 8 ) & 0xff;
output[2 ] = (hash[0] >> 16) & 0xff;
output[3 ] = (hash[0] >> 24) & 0xff;
output[4 ] = (hash[1] >> 0 ) & 0xff;
output[5 ] = (hash[1] >> 8 ) & 0xff;
output[6 ] = (hash[1] >> 16) & 0xff;
output[7 ] = (hash[1] >> 24) & 0xff;
output[8 ] = (hash[2] >> 0 ) & 0xff;
output[9 ] = (hash[2] >> 8 ) & 0xff;
output[10] = (hash[2] >> 16) & 0xff;
output[11] = (hash[2] >> 24) & 0xff;
output[12] = (hash[3] >> 0 ) & 0xff;
output[13] = (hash[3] >> 8 ) & 0xff;
output[14] = (hash[3] >> 16) & 0xff;
output[15] = (hash[3] >> 24) & 0xff;
}
/// Right rotate function. Shifts bytes off the least significant end, wrapping them to the most significant end.
static inline uint32_t rr(uint32_t x, uint32_t c){
return ((x << (32 - c)) | ((x & 0xFFFFFFFF) >> c));
}
/// Adds 64 bytes of data to the current SHA256 hash.
/// hash is the current hash, represented by 8 unsigned longs.
/// data is the 64 bytes of data that need to be added.
static inline void sha256_add64(uint32_t * hash, const char * data){
//Inspired by the pseudocode as available on Wikipedia on March 3rd, 2015.
uint32_t w[64];
for (unsigned int i = 0; i < 16; ++i){
w[i] = (uint32_t)data[(i<<2)+3] | ((uint32_t)data[(i<<2)+2] << 8) | ((uint32_t)data[(i<<2)+1] << 16) | ((uint32_t)data[(i<<2)+0] << 24);
}
for (unsigned int i = 16; i < 64; ++i){
uint32_t s0 = rr(w[i-15], 7) ^ rr(w[i-15], 18) ^ ((w[i-15] & 0xFFFFFFFF ) >> 3);
uint32_t s1 = rr(w[i-2], 17) ^ rr(w[i-2], 19) ^ ((w[i-2] & 0xFFFFFFFF) >> 10);
w[i] = w[i-16] + s0 + w[i-7] + s1;
}
static uint32_t k[] = {0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};
uint32_t a = hash[0];
uint32_t b = hash[1];
uint32_t c = hash[2];
uint32_t d = hash[3];
uint32_t e = hash[4];
uint32_t f = hash[5];
uint32_t g = hash[6];
uint32_t h = hash[7];
for (unsigned int i = 0; i < 64; ++i){
uint32_t temp1 = h + (rr(e, 6) ^ rr(e, 11) ^ rr(e, 25)) + (g^(e&(f^g))) + k[i] + w[i];
uint32_t temp2 = (rr(a, 2) ^ rr(a, 13) ^ rr(a, 22)) + ((a&b)|(c&(a|b)));
h = g;
g = f;
f = e;
e = d + temp1;
d = c;
c = b;
b = a;
a = temp1 + temp2;
}
hash[0] += a;
hash[1] += b;
hash[2] += c;
hash[3] += d;
hash[4] += e;
hash[5] += f;
hash[6] += g;
hash[7] += h;
}
/// Calculates a SHA256 digest as per NSAs SHA-2, returning it as binary.
/// Assumes output is big enough to contain 16 bytes of data.
void sha256bin(const char * input, const unsigned int in_len, char * output){
//Initialize the hash, according to MD5 spec.
uint32_t hash[] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
//Add as many whole blocks of 64 bytes as possible from the input, until < 64 are left.
unsigned int offset = 0;
while (offset+64 <= in_len){
sha256_add64(hash, input+offset);
offset += 64;
}
//now, copy the remainder to a 64 byte buffer.
char buffer[64];
memcpy(buffer, input+offset, in_len-offset);
//Calculate how much we've filled in that buffer
offset = in_len - offset;
//We know at least 1 byte must be empty, so we can safely do this
buffer[offset] = 0x80;//append 0x80
//fill to the end of the buffer with zeroes
memset(buffer+offset+1, 0, 64-offset-1);
if (offset > 55){
//There's no space for the length, add what we have and zero it
sha256_add64(hash, buffer);
memset(buffer, 0, 64);
}
unsigned long long bit_len = in_len << 3;
//Write the length into the last 8 bytes
buffer[56] = (bit_len >> 54) & 0xff;
buffer[57] = (bit_len >> 48) & 0xff;
buffer[58] = (bit_len >> 40) & 0xff;
buffer[59] = (bit_len >> 32) & 0xff;
buffer[60] = (bit_len >> 24) & 0xff;
buffer[61] = (bit_len >> 16) & 0xff;
buffer[62] = (bit_len >> 8) & 0xff;
buffer[63] = (bit_len >> 0) & 0xff;
//Add the last bit of buffer
sha256_add64(hash, buffer);
//Write result to output
output[3] = hash[0] & 0xff;
output[2] = (hash[0] >> 8) & 0xff;
output[1] = (hash[0] >> 16) & 0xff;
output[0] = (hash[0] >> 24) & 0xff;
output[7] = hash[1] & 0xff;
output[6] = (hash[1] >> 8) & 0xff;
output[5] = (hash[1] >> 16) & 0xff;
output[4] = (hash[1] >> 24) & 0xff;
output[11] = hash[2] & 0xff;
output[10] = (hash[2] >> 8) & 0xff;
output[9] = (hash[2] >> 16) & 0xff;
output[8] = (hash[2] >> 24) & 0xff;
output[15] = hash[3] & 0xff;
output[14] = (hash[3] >> 8) & 0xff;
output[13] = (hash[3] >> 16) & 0xff;
output[12] = (hash[3] >> 24) & 0xff;
output[19] = hash[4] & 0xff;
output[18] = (hash[4] >> 8) & 0xff;
output[17] = (hash[4] >> 16) & 0xff;
output[16] = (hash[4] >> 24) & 0xff;
output[23] = hash[5] & 0xff;
output[22] = (hash[5] >> 8) & 0xff;
output[21] = (hash[5] >> 16) & 0xff;
output[20] = (hash[5] >> 24) & 0xff;
output[27] = hash[6] & 0xff;
output[26] = (hash[6] >> 8) & 0xff;
output[25] = (hash[6] >> 16) & 0xff;
output[24] = (hash[6] >> 24) & 0xff;
output[31] = hash[7] & 0xff;
output[30] = (hash[7] >> 8) & 0xff;
output[29] = (hash[7] >> 16) & 0xff;
output[28] = (hash[7] >> 24) & 0xff;
}
/// Performs HMAC on msg with given key.
/// Uses given hasher function, requires hashSize to be set accordingly.
/// Output is returned as hexadecimal alphanumeric string.
/// The hasher function must be the "bin" version of the hasher to have a compatible function signature.
std::string hmac(std::string msg, std::string key, unsigned int hashSize, void hasher(const char *, const unsigned int, char*), unsigned int blockSize){
return hmac(msg.data(), msg.size(), key.data(), key.size(), hashSize, hasher, blockSize);
}
/// Performs HMAC on msg with given key.
/// Uses given hasher function, requires hashSize to be set accordingly.
/// Output is returned as hexadecimal alphanumeric string.
/// The hasher function must be the "bin" version of the hasher to have a compatible function signature.
std::string hmac(const char * msg, const unsigned int msg_len, const char * key, const unsigned int key_len, unsigned int hashSize, void hasher(const char *, const unsigned int, char*), unsigned int blockSize){
char output[hashSize];
hmacbin(msg, msg_len, key, key_len, hashSize, hasher, blockSize, output);
std::stringstream outStr;
for (unsigned int i = 0; i < hashSize; ++i){
outStr << std::hex << std::setw(2) << std::setfill('0') << (unsigned int)(output[i] & 0xff);
}
return outStr.str();
}
/// Performs HMAC on msg with given key.
/// Uses given hasher function, requires hashSize to be set accordingly.
/// Output is written in binary form to output, and assumes hashSize bytes are available to be written to.
/// The hasher function must be the "bin" version of the hasher to have a compatible function signature.
void hmacbin(const char * msg, const unsigned int msg_len, const char * key, const unsigned int key_len, unsigned int hashSize, void hasher(const char*, const unsigned int, char*), unsigned int blockSize, char * output){
char key_data[blockSize];//holds key as used in HMAC algorithm
if (key_len > blockSize){
//If the key given is too big, hash it.
hasher(key, key_len, key_data);
memset(key_data+hashSize, 0, blockSize-hashSize);
}else{
//Otherwise, use as-is, zero-padded if too small.
memcpy(key_data, key, key_len);
memset(key_data+key_len, 0, blockSize-key_len);
}
//key_data now contains hashSize bytes of key data, treated as per spec.
char inner[blockSize+msg_len];//holds data for inner hash
char outer[blockSize+hashSize];//holds data for outer hash
for (unsigned int i = 0; i < blockSize; ++i){
inner[i] = key_data[i] ^ 0x36;
outer[i] = key_data[i] ^ 0x5c;
}
//Copy the message to the inner hash data buffer
memcpy(inner+blockSize, msg, msg_len);
//Calculate the inner hash
hasher(inner, blockSize+msg_len, outer+blockSize);
//Calculate the outer hash
hasher(outer, blockSize+hashSize, output);
}
/// Convenience function that returns the hexadecimal alphanumeric HMAC-SHA256 of msg and key
std::string hmac_sha256(std::string msg, std::string key){
return hmac_sha256(msg.data(), msg.size(), key.data(), key.size());
}
/// Convenience function that returns the hexadecimal alphanumeric HMAC-SHA256 of msg and key
std::string hmac_sha256(const char * msg, const unsigned int msg_len, const char * key, const unsigned int key_len){
return hmac(msg, msg_len, key, key_len, 32, sha256bin, 64);
}
/// Convenience function that sets output to the HMAC-SHA256 of msg and key in binary format.
/// Assumes at least 32 bytes are available for writing in output.
void hmac_sha256bin(const char * msg, const unsigned int msg_len, const char * key, const unsigned int key_len, char * output){
return hmacbin(msg, msg_len, key, key_len, 32, sha256bin, 64, output);
}
}