mistserver/lib/flv_tag.cpp

1133 lines
33 KiB
C++

/// \file flv_tag.cpp
/// Holds all code for the FLV namespace.
#include "amf.h"
#include "rtmpchunks.h"
#include "flv_tag.h"
#include "timing.h"
#include <stdio.h> //for Tag::FileLoader
#include <unistd.h> //for Tag::FileLoader
#include <fcntl.h> //for Tag::FileLoader
#include <stdlib.h> //malloc
#include <string.h> //memcpy
#include <sstream>
/// Holds the last FLV header parsed.
/// Defaults to a audio+video header on FLV version 0x01 if no header received yet.
char FLV::Header[13] = {'F', 'L', 'V', 0x01, 0x05, 0, 0, 0, 0x09, 0, 0, 0, 0};
bool FLV::Parse_Error = false; ///< This variable is set to true if a problem is encountered while parsing the FLV.
std::string FLV::Error_Str = "";
/// Checks a FLV Header for validness. Returns true if the header is valid, false
/// if the header is not. Not valid can mean:
/// - Not starting with the string "FLV".
/// - The DataOffset is not 9 bytes.
/// - The PreviousTagSize is not 0 bytes.
///
/// Note that we see PreviousTagSize as part of the FLV header, not part of the tag header!
bool FLV::check_header(char * header){
if (header[0] != 'F') return false;
if (header[1] != 'L') return false;
if (header[2] != 'V') return false;
if (header[5] != 0) return false;
if (header[6] != 0) return false;
if (header[7] != 0) return false;
if (header[8] != 0x09) return false;
if (header[9] != 0) return false;
if (header[10] != 0) return false;
if (header[11] != 0) return false;
if (header[12] != 0) return false;
return true;
} //FLV::check_header
/// Checks the first 3 bytes for the string "FLV". Implementing a basic FLV header check,
/// returning true if it is, false if not.
bool FLV::is_header(char * header){
if (header[0] != 'F') return false;
if (header[1] != 'L') return false;
if (header[2] != 'V') return false;
return true;
} //FLV::is_header
/// True if this media type requires init data.
/// Will always return false if the tag type is not 0x08 or 0x09.
/// Returns true for H263, AVC (H264), AAC.
/// \todo Check if MP3 does or does not require init data...
bool FLV::Tag::needsInitData(){
switch (data[0]){
case 0x09:
switch (data[11] & 0x0F){
case 2:
return true;
break; //H263 requires init data
case 7:
return true;
break; //AVC requires init data
default:
return false;
break; //other formats do not
}
break;
case 0x08:
switch (data[11] & 0xF0){
case 0x20:
return false;
break; //MP3 does not...? Unsure.
case 0xA0:
return true;
break; //AAC requires init data
case 0xE0:
return false;
break; //MP38kHz does not...?
default:
return false;
break; //other formats do not
}
break;
}
return false; //only audio/video can require init data
}
/// True if current tag is init data for this media type.
bool FLV::Tag::isInitData(){
switch (data[0]){
case 0x09:
switch (data[11] & 0xF0){
case 0x50:
return true;
break;
}
if ((data[11] & 0x0F) == 7){
switch (data[12]){
case 0:
return true;
break;
}
}
break;
case 0x08:
if ((data[12] == 0) && ((data[11] & 0xF0) == 0xA0)){
return true;
}
break;
}
return false;
}
const char * FLV::Tag::getVideoCodec(){
switch (data[11] & 0x0F){
case 1:
return "JPEG";
case 2:
return "H263";
case 3:
return "ScreenVideo1";
case 4:
return "VP6";
case 5:
return "VP6Alpha";
case 6:
return "ScreenVideo2";
case 7:
return "H264";
default:
return "unknown";
}
}
const char * FLV::Tag::getAudioCodec(){
switch (data[11] & 0xF0){
case 0x00:
return "linear PCM PE";
case 0x10:
return "ADPCM";
case 0x20:
return "MP3";
case 0x30:
return "linear PCM LE";
case 0x40:
return "Nelly16kHz";
case 0x50:
return "Nelly8kHz";
case 0x60:
return "Nelly";
case 0x70:
return "G711A-law";
case 0x80:
return "G711mu-law";
case 0x90:
return "reserved";
case 0xA0:
return "AAC";
case 0xB0:
return "Speex";
case 0xE0:
return "MP38kHz";
case 0xF0:
return "DeviceSpecific";
default:
return "unknown";
}
}
/// Returns a std::string describing the tag in detail.
/// The string includes information about whether the tag is
/// audio, video or metadata, what encoding is used, and the details
/// of the encoding itself.
std::string FLV::Tag::tagType(){
std::stringstream R;
R << len << " bytes of ";
switch (data[0]){
case 0x09:
R << getVideoCodec() << " video ";
switch (data[11] & 0xF0){
case 0x10:
R << "keyframe";
break;
case 0x20:
R << "iframe";
break;
case 0x30:
R << "disposableiframe";
break;
case 0x40:
R << "generatedkeyframe";
break;
case 0x50:
R << "videoinfo";
break;
}
if ((data[11] & 0x0F) == 7){
switch (data[12]){
case 0:
R << " header";
break;
case 1:
R << " NALU";
break;
case 2:
R << " endofsequence";
break;
}
}
break;
case 0x08:
R << getAudioCodec();
switch (data[11] & 0x0C){
case 0x0:
R << " 5.5kHz";
break;
case 0x4:
R << " 11kHz";
break;
case 0x8:
R << " 22kHz";
break;
case 0xC:
R << " 44kHz";
break;
}
switch (data[11] & 0x02){
case 0:
R << " 8bit";
break;
case 2:
R << " 16bit";
break;
}
switch (data[11] & 0x01){
case 0:
R << " mono";
break;
case 1:
R << " stereo";
break;
}
R << " audio";
if ((data[12] == 0) && ((data[11] & 0xF0) == 0xA0)){
R << " initdata";
}
break;
case 0x12: {
R << "(meta)data: ";
AMF::Object metadata = AMF::parse((unsigned char*)data + 11, len - 15);
R << metadata.Print();
break;
}
default:
R << "unknown";
break;
}
return R.str();
} //FLV::Tag::tagtype
/// Returns the 24-bit offset of this tag.
/// Returns 0 if the tag isn't H264
int FLV::Tag::offset(){
return (((data[13] << 16) + (data[14] << 8) + data[15]) << 8) >> 8;
} //offset getter
/// Sets the 24-bit offset of this tag.
/// Ignored if the tag isn't H264
void FLV::Tag::offset(int o){
data[13] = (o >> 16) & 0xFF;
data[14] = (o >> 8) & 0XFF;
data[15] = o & 0xFF;
} //offset setter
/// Returns the 32-bit timestamp of this tag.
unsigned int FLV::Tag::tagTime(){
return (data[4] << 16) + (data[5] << 8) + data[6] + (data[7] << 24);
} //tagTime getter
/// Sets the 32-bit timestamp of this tag.
void FLV::Tag::tagTime(unsigned int T){
data[4] = ((T >> 16) & 0xFF);
data[5] = ((T >> 8) & 0xFF);
data[6] = (T & 0xFF);
data[7] = ((T >> 24) & 0xFF);
} //tagTime setter
/// Constructor for a new, empty, tag.
/// The buffer length is initialized to 0, and later automatically
/// increased if neccesary.
FLV::Tag::Tag(){
len = 0;
buf = 0;
data = 0;
isKeyframe = false;
done = true;
sofar = 0;
} //empty constructor
/// Copy constructor, copies the contents of an existing tag.
/// The buffer length is initialized to the actual size of the tag
/// that is being copied, and later automaticallt increased if
/// neccesary.
FLV::Tag::Tag(const Tag& O){
done = true;
sofar = 0;
len = O.len;
data = 0;
if (len > 0){
if (checkBufferSize()){
memcpy(data, O.data, len);
}
}
isKeyframe = O.isKeyframe;
} //copy constructor
/// Copy constructor from a RTMP chunk.
/// Copies the contents of a RTMP chunk into a valid FLV tag.
/// Exactly the same as making a chunk by through the default (empty) constructor
/// and then calling FLV::Tag::ChunkLoader with the chunk as argument.
FLV::Tag::Tag(const RTMPStream::Chunk& O){
len = 0;
buf = 0;
data = 0;
isKeyframe = false;
done = true;
sofar = 0;
ChunkLoader(O);
}
/// Generic destructor that frees the allocated memory in the internal data variable, if any.
FLV::Tag::~Tag(){
if (data){
free(data);
data = 0;
buf = 0;
len = 0;
}
}
/// Assignment operator - works exactly like the copy constructor.
/// This operator checks for self-assignment.
FLV::Tag & FLV::Tag::operator=(const FLV::Tag& O){
if (this != &O){ //no self-assignment
len = O.len;
if (len > 0){
if (checkBufferSize()){
memcpy(data, O.data, len);
}else{
len = buf;
}
}
isKeyframe = O.isKeyframe;
}
return *this;
} //assignment operator
/// FLV loader function from DTSC.
/// Takes the DTSC data and makes it into FLV.
bool FLV::Tag::DTSCLoader(DTSC::Stream & S){
std::string meta_str;
DTSC::Track & track = S.metadata.tracks[S.getPacket()["trackid"].asInt()];
switch (S.lastType()){
case DTSC::VIDEO:
len = S.lastData().length() + 16;
if (track.codec == "H264"){
len += 4;
}
break;
case DTSC::AUDIO:
len = S.lastData().length() + 16;
if (track.codec == "AAC"){
len += 1;
}
break;
case DTSC::META:{
AMF::Object amfdata("root", AMF::AMF0_DDV_CONTAINER);
amfdata.addContent(AMF::Object("", "onMetaData"));
amfdata.addContent(AMF::Object("", AMF::AMF0_ECMA_ARRAY));
for (JSON::ObjIter it = S.getPacket()["data"].ObjBegin(); it != S.getPacket()["data"].ObjEnd(); it++){
if (it->second.asInt()){
amfdata.getContentP(1)->addContent(AMF::Object(it->first, it->second.asInt(), AMF::AMF0_NUMBER));
}else{
amfdata.getContentP(1)->addContent(AMF::Object(it->first, it->second.asString(), AMF::AMF0_STRING));
}
}
meta_str = amfdata.Pack();
len = meta_str.length() + 15;
break;
}
default: //ignore all other types (there are currently no other types...)
return false;
break;
}
if (len > 0){
if ( !checkBufferSize()){
return false;
}
switch (S.lastType()){
case DTSC::VIDEO:
if ((unsigned int)len == S.lastData().length() + 16){
memcpy(data + 12, S.lastData().c_str(), S.lastData().length());
}else{
memcpy(data + 16, S.lastData().c_str(), S.lastData().length());
if (S.getPacket().isMember("nalu")){
data[12] = 1;
}else{
data[12] = 2;
}
offset(S.getPacket()["offset"].asInt());
}
data[11] = 0;
if (track.codec == "H264"){
data[11] += 7;
}
if (track.codec == "H263"){
data[11] += 2;
}
if (S.getPacket().isMember("keyframe")){
data[11] += 0x10;
}
if (S.getPacket().isMember("interframe")){
data[11] += 0x20;
}
if (S.getPacket().isMember("disposableframe")){
data[11] += 0x30;
}
break;
case DTSC::AUDIO: {
if ((unsigned int)len == S.lastData().length() + 16){
memcpy(data + 12, S.lastData().c_str(), S.lastData().length());
}else{
memcpy(data + 13, S.lastData().c_str(), S.lastData().length());
data[12] = 1; //raw AAC data, not sequence header
}
data[11] = 0;
if (track.codec == "AAC"){
data[11] += 0xA0;
}
if (track.codec == "MP3"){
data[11] += 0x20;
}
unsigned int datarate = track.rate;
if (datarate >= 44100){
data[11] += 0x0C;
}else if (datarate >= 22050){
data[11] += 0x08;
}else if (datarate >= 11025){
data[11] += 0x04;
}
if (track.size == 16){
data[11] += 0x02;
}
if (track.channels > 1){
data[11] += 0x01;
}
break;
}
case DTSC::META:
memcpy(data + 11, meta_str.c_str(), meta_str.length());
break;
default:
break;
}
}
setLen();
switch (S.lastType()){
case DTSC::VIDEO:
data[0] = 0x09;
break;
case DTSC::AUDIO:
data[0] = 0x08;
break;
case DTSC::META:
data[0] = 0x12;
break;
default:
break;
}
data[1] = ((len - 15) >> 16) & 0xFF;
data[2] = ((len - 15) >> 8) & 0xFF;
data[3] = (len - 15) & 0xFF;
data[8] = 0;
data[9] = 0;
data[10] = 0;
tagTime(S.getPacket()["time"].asInt());
return true;
}
/// Helper function that properly sets the tag length from the internal len variable.
void FLV::Tag::setLen(){
int len4 = len - 4;
int i = len;
data[ --i] = (len4) & 0xFF;
len4 >>= 8;
data[ --i] = (len4) & 0xFF;
len4 >>= 8;
data[ --i] = (len4) & 0xFF;
len4 >>= 8;
data[ --i] = (len4) & 0xFF;
}
/// FLV Video init data loader function from JSON.
bool FLV::Tag::DTSCVideoInit(DTSC::Track & video){
//Unknown? Assume H264.
if (video.codec == "?"){
video.codec = "H264";
}
if (video.codec == "H264"){
len = video.init.size() + 20;
}
if (len > 0){
if ( !checkBufferSize()){
return false;
}
memcpy(data + 16, video.init.c_str(), len - 20);
data[12] = 0; //H264 sequence header
data[13] = 0;
data[14] = 0;
data[15] = 0;
data[11] = 0x17; //H264 keyframe (0x07 & 0x10)
}
setLen();
data[0] = 0x09;
data[1] = ((len - 15) >> 16) & 0xFF;
data[2] = ((len - 15) >> 8) & 0xFF;
data[3] = (len - 15) & 0xFF;
data[8] = 0;
data[9] = 0;
data[10] = 0;
tagTime(0);
return true;
}
/// FLV Audio init data loader function from JSON.
bool FLV::Tag::DTSCAudioInit(DTSC::Track & audio){
len = 0;
//Unknown? Assume AAC.
if (audio.codec == "?"){
audio.codec = "AAC";
}
if (audio.codec == "AAC"){
len = audio.init.size() + 17;
}
if (len > 0){
if ( !checkBufferSize()){
return false;
}
memcpy(data + 13, audio.init.c_str(), len - 17);
data[12] = 0; //AAC sequence header
data[11] = 0;
if (audio.codec == "AAC"){
data[11] += 0xA0;
}
if (audio.codec == "MP3"){
data[11] += 0x20;
}
unsigned int datarate = audio.rate;
if (datarate >= 44100){
data[11] += 0x0C;
}else if (datarate >= 22050){
data[11] += 0x08;
}else if (datarate >= 11025){
data[11] += 0x04;
}
if (audio.size == 16){
data[11] += 0x02;
}
if (audio.channels > 1){
data[11] += 0x01;
}
}
setLen();
data[0] = 0x08;
data[1] = ((len - 15) >> 16) & 0xFF;
data[2] = ((len - 15) >> 8) & 0xFF;
data[3] = (len - 15) & 0xFF;
data[8] = 0;
data[9] = 0;
data[10] = 0;
tagTime(0);
return true;
}
/// FLV metadata loader function from DTSC.
/// Takes the DTSC metadata and makes it into FLV.
/// Assumes metadata is available - so check before calling!
bool FLV::Tag::DTSCMetaInit(DTSC::Stream & S, DTSC::Track & videoRef, DTSC::Track & audioRef){
//Unknown? Assume AAC.
if (audioRef.codec == "?"){
audioRef.codec = "AAC";
}
//Unknown? Assume H264.
if (videoRef.codec == "?"){
videoRef.codec = "H264";
}
AMF::Object amfdata("root", AMF::AMF0_DDV_CONTAINER);
amfdata.addContent(AMF::Object("", "onMetaData"));
amfdata.addContent(AMF::Object("", AMF::AMF0_ECMA_ARRAY));
if (S.metadata.vod){
amfdata.getContentP(1)->addContent(AMF::Object("duration", videoRef.lastms / 1000, AMF::AMF0_NUMBER));
amfdata.getContentP(1)->addContent(AMF::Object("moovPosition", 40, AMF::AMF0_NUMBER));
AMF::Object keys("keyframes", AMF::AMF0_OBJECT);
keys.addContent(AMF::Object("filepositions", AMF::AMF0_STRICT_ARRAY));
keys.addContent(AMF::Object("times", AMF::AMF0_STRICT_ARRAY));
int total_byterate = 0;
if (videoRef){
total_byterate += videoRef.bps;
}
if (audioRef){
total_byterate += audioRef.bps;
}
for (int i = 0; i < videoRef.lastms / 1000; ++i){ //for each second in the file
keys.getContentP(0)->addContent(AMF::Object("", i * total_byterate, AMF::AMF0_NUMBER)); //multiply by byterate for fake byte positions
keys.getContentP(1)->addContent(AMF::Object("", i, AMF::AMF0_NUMBER)); //seconds
}
amfdata.getContentP(1)->addContent(keys);
}
if (videoRef){
amfdata.getContentP(1)->addContent(AMF::Object("hasVideo", 1, AMF::AMF0_BOOL));
if (videoRef.codec == "H264"){
amfdata.getContentP(1)->addContent(AMF::Object("videocodecid", (std::string)"avc1"));
}
if (videoRef.codec == "VP6"){
amfdata.getContentP(1)->addContent(AMF::Object("videocodecid", 4, AMF::AMF0_NUMBER));
}
if (videoRef.codec == "H263"){
amfdata.getContentP(1)->addContent(AMF::Object("videocodecid", 2, AMF::AMF0_NUMBER));
}
amfdata.getContentP(1)->addContent(AMF::Object("width", videoRef.width, AMF::AMF0_NUMBER));
amfdata.getContentP(1)->addContent(AMF::Object("height", videoRef.height, AMF::AMF0_NUMBER));
amfdata.getContentP(1)->addContent(AMF::Object("videoframerate", (double)videoRef.fpks / 1000.0, AMF::AMF0_NUMBER));
amfdata.getContentP(1)->addContent(AMF::Object("videodatarate", (double)videoRef.bps * 128.0, AMF::AMF0_NUMBER));
}
if (audioRef){
amfdata.getContentP(1)->addContent(AMF::Object("hasAudio", 1, AMF::AMF0_BOOL));
amfdata.getContentP(1)->addContent(AMF::Object("audiodelay", 0, AMF::AMF0_NUMBER));
if (audioRef.codec == "AAC"){
amfdata.getContentP(1)->addContent(AMF::Object("audiocodecid", (std::string)"mp4a"));
}
if (audioRef.codec == "MP3"){
amfdata.getContentP(1)->addContent(AMF::Object("audiocodecid", (std::string)"mp3"));
}
amfdata.getContentP(1)->addContent(AMF::Object("audiochannels", audioRef.channels, AMF::AMF0_NUMBER));
amfdata.getContentP(1)->addContent(AMF::Object("audiosamplerate", audioRef.rate, AMF::AMF0_NUMBER));
amfdata.getContentP(1)->addContent(AMF::Object("audiosamplesize", audioRef.size, AMF::AMF0_NUMBER));
amfdata.getContentP(1)->addContent(AMF::Object("audiodatarate", (double)audioRef.bps * 128.0, AMF::AMF0_NUMBER));
}
AMF::Object trinfo = AMF::Object("trackinfo", AMF::AMF0_STRICT_ARRAY);
int i = 0;
if (audioRef){
trinfo.addContent(AMF::Object("", AMF::AMF0_OBJECT));
trinfo.getContentP(i)->addContent(AMF::Object("length", ((double)audioRef.lastms) * ((double)audioRef.rate), AMF::AMF0_NUMBER));
trinfo.getContentP(i)->addContent(AMF::Object("timescale", audioRef.rate, AMF::AMF0_NUMBER));
trinfo.getContentP(i)->addContent(AMF::Object("sampledescription", AMF::AMF0_STRICT_ARRAY));
if (audioRef.codec == "AAC"){
trinfo.getContentP(i)->getContentP(2)->addContent(AMF::Object("sampletype", (std::string)"mp4a"));
}
if (audioRef.codec == "MP3"){
trinfo.getContentP(i)->getContentP(2)->addContent(AMF::Object("sampletype", (std::string)"mp3"));
}
++i;
}
if (videoRef){
trinfo.addContent(AMF::Object("", AMF::AMF0_OBJECT));
trinfo.getContentP(i)->addContent(
AMF::Object("length", ((double)videoRef.lastms / 1000) * ((double)videoRef.fpks / 1000.0), AMF::AMF0_NUMBER));
trinfo.getContentP(i)->addContent(AMF::Object("timescale", ((double)videoRef.fpks / 1000.0), AMF::AMF0_NUMBER));
trinfo.getContentP(i)->addContent(AMF::Object("sampledescription", AMF::AMF0_STRICT_ARRAY));
if (videoRef.codec == "H264"){
trinfo.getContentP(i)->getContentP(2)->addContent(AMF::Object("sampletype", (std::string)"avc1"));
}
if (videoRef.codec == "VP6"){
trinfo.getContentP(i)->getContentP(2)->addContent(AMF::Object("sampletype", (std::string)"vp6"));
}
if (videoRef.codec == "H263"){
trinfo.getContentP(i)->getContentP(2)->addContent(AMF::Object("sampletype", (std::string)"h263"));
}
++i;
}
amfdata.getContentP(1)->addContent(trinfo);
std::string tmp = amfdata.Pack();
len = tmp.length() + 15;
if (len > 0){
if (checkBufferSize()){
memcpy(data + 11, tmp.c_str(), len - 15);
}else{
return false;
}
}
setLen();
data[0] = 0x12;
data[1] = ((len - 15) >> 16) & 0xFF;
data[2] = ((len - 15) >> 8) & 0xFF;
data[3] = (len - 15) & 0xFF;
data[8] = 0;
data[9] = 0;
data[10] = 0;
tagTime(0);
return true;
}
/// FLV loader function from chunk.
/// Copies the contents and wraps it in a FLV header.
bool FLV::Tag::ChunkLoader(const RTMPStream::Chunk& O){
len = O.len + 15;
if (len > 0){
if ( !checkBufferSize()){
return false;
}
memcpy(data + 11, &(O.data[0]), O.len);
}
setLen();
data[0] = O.msg_type_id;
data[3] = O.len & 0xFF;
data[2] = (O.len >> 8) & 0xFF;
data[1] = (O.len >> 16) & 0xFF;
tagTime(O.timestamp);
return true;
}
/// Helper function for FLV::MemLoader.
/// This function will try to read count bytes from data buffer D into buffer.
/// This function should be called repeatedly until true.
/// P and sofar are not the same value, because D may not start with the current tag.
/// \param buffer The target buffer.
/// \param count Amount of bytes to read.
/// \param sofar Current amount read.
/// \param D The location of the data buffer.
/// \param S The size of the data buffer.
/// \param P The current position in the data buffer. Will be updated to reflect new position.
/// \return True if count bytes are read succesfully, false otherwise.
bool FLV::Tag::MemReadUntil(char * buffer, unsigned int count, unsigned int & sofar, char * D, unsigned int S, unsigned int & P){
if (sofar >= count){
return true;
}
int r = 0;
if (P + (count - sofar) > S){
r = S - P;
}else{
r = count - sofar;
}
memcpy(buffer + sofar, D + P, r);
P += r;
sofar += r;
if (sofar >= count){
return true;
}
return false;
} //Tag::MemReadUntil
/// Try to load a tag from a data buffer in memory.
/// This is a stateful function - if fed incorrect data, it will most likely never return true again!
/// While this function returns false, the Tag might not contain valid data.
/// \param D The location of the data buffer.
/// \param S The size of the data buffer.
/// \param P The current position in the data buffer. Will be updated to reflect new position.
/// \return True if a whole tag is succesfully read, false otherwise.
bool FLV::Tag::MemLoader(char * D, unsigned int S, unsigned int & P){
if (len < 15){
len = 15;
}
if ( !checkBufferSize()){
return false;
}
if (done){
//read a header
if (MemReadUntil(data, 11, sofar, D, S, P)){
//if its a correct FLV header, throw away and read tag header
if (FLV::is_header(data)){
if (MemReadUntil(data, 13, sofar, D, S, P)){
if (FLV::check_header(data)){
sofar = 0;
memcpy(FLV::Header, data, 13);
}else{
FLV::Parse_Error = true;
Error_Str = "Invalid header received.";
return false;
}
}
}else{
//if a tag header, calculate length and read tag body
len = data[3] + 15;
len += (data[2] << 8);
len += (data[1] << 16);
if ( !checkBufferSize()){
return false;
}
if (data[0] > 0x12){
data[0] += 32;
FLV::Parse_Error = true;
Error_Str = "Invalid Tag received (";
Error_Str += data[0];
Error_Str += ").";
return false;
}
done = false;
}
}
}else{
//read tag body
if (MemReadUntil(data, len, sofar, D, S, P)){
//calculate keyframeness, next time read header again, return true
if ((data[0] == 0x09) && (((data[11] & 0xf0) >> 4) == 1)){
isKeyframe = true;
}else{
isKeyframe = false;
}
done = true;
sofar = 0;
return true;
}
}
return false;
} //Tag::MemLoader
/// Helper function for FLV::FileLoader.
/// This function will try to read count bytes from file f into buffer.
/// This function should be called repeatedly until true.
/// \param buffer The target buffer.
/// \param count Amount of bytes to read.
/// \param sofar Current amount read.
/// \param f File to read from.
/// \return True if count bytes are read succesfully, false otherwise.
bool FLV::Tag::FileReadUntil(char * buffer, unsigned int count, unsigned int & sofar, FILE * f){
if (sofar >= count){
return true;
}
int r = 0;
r = fread(buffer + sofar, 1, count - sofar, f);
if (r < 0){
FLV::Parse_Error = true;
Error_Str = "File reading error.";
return false;
}
sofar += r;
if (sofar >= count){
return true;
}
return false;
}
/// Try to load a tag from a file.
/// This is a stateful function - if fed incorrect data, it will most likely never return true again!
/// While this function returns false, the Tag might not contain valid data.
/// \param f The file to read from.
/// \return True if a whole tag is succesfully read, false otherwise.
bool FLV::Tag::FileLoader(FILE * f){
int preflags = fcntl(fileno(f), F_GETFL, 0);
int postflags = preflags | O_NONBLOCK;
fcntl(fileno(f), F_SETFL, postflags);
if (len < 15){len = 15;}
if ( !checkBufferSize()){
return false;
}
if (done){
//read a header
if (FileReadUntil(data, 11, sofar, f)){
//if its a correct FLV header, throw away and read tag header
if (FLV::is_header(data)){
if (FileReadUntil(data, 13, sofar, f)){
if (FLV::check_header(data)){
sofar = 0;
memcpy(FLV::Header, data, 13);
}else{
FLV::Parse_Error = true;
Error_Str = "Invalid header received.";
return false;
}
}else{
Util::sleep(100);//sleep 100ms
}
}else{
//if a tag header, calculate length and read tag body
len = data[3] + 15;
len += (data[2] << 8);
len += (data[1] << 16);
if ( !checkBufferSize()){
return false;
}
if (data[0] > 0x12){
data[0] += 32;
FLV::Parse_Error = true;
Error_Str = "Invalid Tag received (";
Error_Str += data[0];
Error_Str += ").";
return false;
}
done = false;
}
}else{
Util::sleep(100);//sleep 100ms
}
}else{
//read tag body
if (FileReadUntil(data, len, sofar, f)){
//calculate keyframeness, next time read header again, return true
if ((data[0] == 0x09) && (((data[11] & 0xf0) >> 4) == 1)){
isKeyframe = true;
}else{
isKeyframe = false;
}
done = true;
sofar = 0;
fcntl(fileno(f), F_SETFL, preflags);
return true;
}else{
Util::sleep(100);//sleep 100ms
}
}
fcntl(fileno(f), F_SETFL, preflags);
return false;
} //FLV_GetPacket
JSON::Value FLV::Tag::toJSON(DTSC::Meta & metadata){
JSON::Value pack_out; // Storage for outgoing metadata.
if (data[0] == 0x12){
AMF::Object meta_in = AMF::parse((unsigned char*)data + 11, len - 15);
AMF::Object * tmp = 0;
if (meta_in.getContentP(1) && meta_in.getContentP(0) && (meta_in.getContentP(0)->StrValue() == "onMetaData")){
tmp = meta_in.getContentP(1);
}else{
if (meta_in.getContentP(2) && meta_in.getContentP(1) && (meta_in.getContentP(1)->StrValue() == "onMetaData")){
tmp = meta_in.getContentP(2);
}
}
if (tmp){
if (tmp->getContentP("width")){
metadata.tracks[1].width = (long long int)tmp->getContentP("width")->NumValue();
}
if (tmp->getContentP("height")){
metadata.tracks[1].height = (long long int)tmp->getContentP("height")->NumValue();
}
if (tmp->getContentP("framerate")){
metadata.tracks[1].fpks = (long long int)(tmp->getContentP("framerate")->NumValue() * 1000.0);
}
if (tmp->getContentP("videodatarate")){
metadata.tracks[1].bps = (long long int)(tmp->getContentP("videodatarate")->NumValue() * 1024) / 8;
}
if (tmp->getContentP("audiodatarate")){
metadata.tracks[2].bps = (long long int)(tmp->getContentP("audiodatarate")->NumValue() * 1024) / 8;
}
if (tmp->getContentP("audiosamplerate")){
metadata.tracks[2].rate = (long long int)tmp->getContentP("audiosamplerate")->NumValue();
}
if (tmp->getContentP("audiosamplesize")){
metadata.tracks[2].size = (long long int)tmp->getContentP("audiosamplesize")->NumValue();
}
if (tmp->getContentP("stereo")){
if (tmp->getContentP("stereo")->NumValue() == 1){
metadata.tracks[2].channels = 2;
}else{
metadata.tracks[2].channels = 1;
}
}
for (int i = 0; i < tmp->hasContent(); ++i){
if (tmp->getContentP(i)->Indice() == "videocodecid" || tmp->getContentP(i)->Indice() == "audiocodecid" || tmp->getContentP(i)->Indice() == "width" || tmp->getContentP(i)->Indice() == "height" || tmp->getContentP(i)->Indice() == "framerate" || tmp->getContentP(i)->Indice() == "videodatarate" || tmp->getContentP(i)->Indice() == "audiodatarate" || tmp->getContentP(i)->Indice() == "audiosamplerate" || tmp->getContentP(i)->Indice() == "audiosamplesize" || tmp->getContentP(i)->Indice() == "audiochannels"){
continue;
}
if (tmp->getContentP(i)->NumValue()){
pack_out["data"][tmp->getContentP(i)->Indice()] = (long long)tmp->getContentP(i)->NumValue();
}else{
if (tmp->getContentP(i)->StrValue() != ""){
pack_out["data"][tmp->getContentP(i)->Indice()] = tmp->getContentP(i)->StrValue();
}
}
}
if (pack_out){
pack_out["datatype"] = "meta";
pack_out["time"] = tagTime();
}
}
return pack_out; //empty
}
if (data[0] == 0x08){
char audiodata = data[11];
if (needsInitData() && isInitData()){
if ((audiodata & 0xF0) == 0xA0){
metadata.tracks[2].init = std::string((char*)data + 13, (size_t)len - 17);
}else{
metadata.tracks[2].init = std::string((char*)data + 12, (size_t)len - 16);
}
return pack_out; //skip rest of parsing, get next tag.
}
pack_out["time"] = tagTime();
pack_out["trackid"] = 2;
metadata.tracks[2].trackID = 2;
metadata.tracks[2].type = "audio";
if (metadata.tracks[2].codec == ""){
metadata.tracks[2].codec = getAudioCodec();
}
if ( !metadata.tracks[2].rate){
switch (audiodata & 0x0C){
case 0x0:
metadata.tracks[2].rate = 5512;
break;
case 0x4:
metadata.tracks[2].rate = 11025;
break;
case 0x8:
metadata.tracks[2].rate = 22050;
break;
case 0xC:
metadata.tracks[2].rate = 44100;
break;
}
}
if ( !metadata.tracks[2].size){
switch (audiodata & 0x02){
case 0x0:
metadata.tracks[2].size = 8;
break;
case 0x2:
metadata.tracks[2].size = 16;
break;
}
}
if ( !metadata.tracks[2].channels){
switch (audiodata & 0x01){
case 0x0:
metadata.tracks[2].channels = 1;
break;
case 0x1:
metadata.tracks[2].channels = 2;
break;
}
}
if ((audiodata & 0xF0) == 0xA0){
if (len < 18){
return JSON::Value();
}
pack_out["data"] = std::string((char*)data + 13, (size_t)len - 17);
}else{
if (len < 17){
return JSON::Value();
}
pack_out["data"] = std::string((char*)data + 12, (size_t)len - 16);
}
return pack_out;
}
if (data[0] == 0x09){
char videodata = data[11];
if (needsInitData() && isInitData()){
if ((videodata & 0x0F) == 7){
if (len < 21){
return JSON::Value();
}
metadata.tracks[1].init = std::string((char*)data + 16, (size_t)len - 20);
}else{
if (len < 17){
return JSON::Value();
}
metadata.tracks[1].init = std::string((char*)data + 12, (size_t)len - 16);
}
return pack_out; //skip rest of parsing, get next tag.
}
if (metadata.tracks[1].codec == ""){
metadata.tracks[1].codec = getVideoCodec();
}
metadata.tracks[1].type = "video";
metadata.tracks[1].trackID = 1;
pack_out["trackid"] = 1;
switch (videodata & 0xF0){
case 0x10:
pack_out["keyframe"] = 1;
break;
case 0x20:
pack_out["interframe"] = 1;
break;
case 0x30:
pack_out["disposableframe"] = 1;
break;
case 0x40:
pack_out["keyframe"] = 1;
break;
case 0x50:
return JSON::Value();
break; //the video info byte we just throw away - useless to us...
}
pack_out["time"] = tagTime();
if ((videodata & 0x0F) == 7){
switch (data[12]){
case 1:
pack_out["nalu"] = 1;
break;
case 2:
pack_out["nalu_end"] = 1;
break;
}
pack_out["offset"] = offset();
if (len < 21){
return JSON::Value();
}
pack_out["data"] = std::string((char*)data + 16, (size_t)len - 20);
}else{
if (len < 17){
return JSON::Value();
}
pack_out["data"] = std::string((char*)data + 12, (size_t)len - 16);
}
return pack_out;
}
return pack_out; //should never get here
} //FLV::Tag::toJSON
/// Checks if buf is large enough to contain len.
/// Attempts to resize data buffer if not/
/// \returns True if buffer is large enough, false otherwise.
bool FLV::Tag::checkBufferSize(){
if (buf < len || !data){
char * newdata = (char*)realloc(data, len);
// on realloc fail, retain the old data
if (newdata != 0){
data = newdata;
buf = len;
}else{
len = buf;
return false;
}
}
return true;
}