mistserver/lib/procs.cpp
Marco van Dijk ea25d4b74b Scheduled Pushes
Change-Id: I3d3a75f4a45d96e6a7849b14634caedd0899ac69
2023-02-09 17:51:45 +01:00

561 lines
17 KiB
C++

/// \file procs.cpp
/// Contains generic functions for managing processes.
#include "defines.h"
#include "procs.h"
#include <signal.h>
#include <string.h>
#include <sys/types.h>
#if defined(__FreeBSD__) || defined(__APPLE__) || defined(__MACH__)
#include <sys/wait.h>
#else
#include <wait.h>
#endif
#include "timing.h"
#include "json.h"
#include <errno.h>
#include <fcntl.h>
#include <iostream>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
std::set<pid_t> Util::Procs::plist;
std::set<int> Util::Procs::socketList;
bool Util::Procs::handler_set = false;
bool Util::Procs::thread_handler = false;
tthread::mutex Util::Procs::plistMutex;
tthread::thread *Util::Procs::reaper_thread = 0;
/// How many seconds to wait when shutting down child processes. Defaults to 10
int Util::Procs::kill_timeout = 10;
/// Local-only function. Attempts to reap child and returns current running status.
bool Util::Procs::childRunning(pid_t p){
int status;
pid_t ret = waitpid(p, &status, WNOHANG);
if (ret == p){
tthread::lock_guard<tthread::mutex> guard(plistMutex);
int exitcode = -1;
if (WIFEXITED(status)){
exitcode = WEXITSTATUS(status);
}else if (WIFSIGNALED(status)){
exitcode = -WTERMSIG(status);
}
if (plist.count(ret)){
HIGH_MSG("Process %d fully terminated with code %d", ret, exitcode);
plist.erase(ret);
}else{
HIGH_MSG("Child process %d exited with code %d", ret, exitcode);
}
return false;
}
if (ret < 0 && errno == EINTR){return childRunning(p);}
return !kill(p, 0);
}
/// sends sig 0 to process (pid). returns true if process is running
bool Util::Procs::isRunning(pid_t pid){
return !kill(pid, 0);
}
/// Called at exit of any program that used a Start* function.
/// Waits up to 1 second, then sends SIGINT signal to all managed processes.
/// After that waits up to 5 seconds for children to exit, then sends SIGKILL to
/// all remaining children. Waits one more second for cleanup to finish, then exits.
void Util::Procs::exit_handler(){
if (!handler_set){return;}
int waiting = 0;
std::set<pid_t> listcopy;
{
tthread::lock_guard<tthread::mutex> guard(plistMutex);
listcopy = plist;
thread_handler = false;
}
if (reaper_thread){
reaper_thread->join();
delete reaper_thread;
reaper_thread = 0;
}
std::set<pid_t>::iterator it;
if (listcopy.empty()){return;}
// wait up to 0.5 second for applications to shut down
while (!listcopy.empty() && waiting <= 25){
for (it = listcopy.begin(); it != listcopy.end(); it++){
if (!childRunning(*it)){
listcopy.erase(it);
break;
}
if (!listcopy.empty()){
Util::wait(20);
++waiting;
}
}
}
if (listcopy.empty()){return;}
INFO_MSG("Sending SIGINT and waiting up to 10 seconds for %d children to terminate.",
(int)listcopy.size());
waiting = 0;
// wait up to 10 seconds for applications to shut down
while (!listcopy.empty() && waiting <= 50*Util::Procs::kill_timeout){
bool doWait = true;
for (it = listcopy.begin(); it != listcopy.end(); it++){
if (!childRunning(*it)){
listcopy.erase(it);
doWait = false;
break;
}
}
if (doWait && !listcopy.empty()){
if ((waiting % 50) == 0){
for (it = listcopy.begin(); it != listcopy.end(); it++){
INFO_MSG("SIGINT %d", *it);
kill(*it, SIGINT);
}
}
Util::wait(20);
++waiting;
}
}
if (listcopy.empty()){return;}
ERROR_MSG("Sending SIGKILL to remaining %d children", (int)listcopy.size());
// send sigkill to all remaining
if (!listcopy.empty()){
for (it = listcopy.begin(); it != listcopy.end(); it++){
INFO_MSG("SIGKILL %d", *it);
kill(*it, SIGKILL);
}
}
INFO_MSG("Waiting up to a second for %d children to terminate.", (int)listcopy.size());
waiting = 0;
// wait up to 1 second for applications to shut down
while (!listcopy.empty() && waiting <= 50){
for (it = listcopy.begin(); it != listcopy.end(); it++){
if (!childRunning(*it)){
listcopy.erase(it);
break;
}
if (!listcopy.empty()){
Util::wait(20);
++waiting;
}
}
}
if (listcopy.empty()){return;}
FAIL_MSG("Giving up with %d children left.", (int)listcopy.size());
}
// Joins the reaper thread, if any, before a fork
void Util::Procs::fork_prepare(){
tthread::lock_guard<tthread::mutex> guard(plistMutex);
if (handler_set){
thread_handler = false;
if (reaper_thread){
reaper_thread->join();
delete reaper_thread;
reaper_thread = 0;
}
}
}
/// Restarts reaper thread if it was joined
void Util::Procs::fork_complete(){
tthread::lock_guard<tthread::mutex> guard(plistMutex);
if (handler_set){
thread_handler = true;
reaper_thread = new tthread::thread(grim_reaper, 0);
}
}
/// Sets up exit and childsig handlers.
/// Spawns grim_reaper. exit handler despawns grim_reaper
/// Called by every Start* function.
void Util::Procs::setHandler(){
tthread::lock_guard<tthread::mutex> guard(plistMutex);
if (!handler_set){
thread_handler = true;
reaper_thread = new tthread::thread(grim_reaper, 0);
struct sigaction new_action;
new_action.sa_handler = childsig_handler;
sigemptyset(&new_action.sa_mask);
new_action.sa_flags = 0;
sigaction(SIGCHLD, &new_action, NULL);
atexit(exit_handler);
handler_set = true;
}
}
/// Thread that loops until thread_handler is false.
/// Reaps available children and then sleeps for a second.
/// Not done in signal handler so we can use a mutex to prevent race conditions.
void Util::Procs::grim_reaper(void *n){
VERYHIGH_MSG("Grim reaper start");
while (thread_handler){
{
tthread::lock_guard<tthread::mutex> guard(plistMutex);
int status;
pid_t ret = -1;
while (ret != 0){
ret = waitpid(-1, &status, WNOHANG);
if (ret <= 0){// ignore, would block otherwise
if (ret == 0 || errno != EINTR){break;}
continue;
}
int exitcode;
if (WIFEXITED(status)){
exitcode = WEXITSTATUS(status);
}else if (WIFSIGNALED(status)){
exitcode = -WTERMSIG(status);
}else{// not possible
break;
}
if (plist.count(ret)){
HIGH_MSG("Process %d fully terminated with code %d", ret, exitcode);
plist.erase(ret);
}else{
HIGH_MSG("Child process %d exited with code %d", ret, exitcode);
}
}
}
Util::sleep(500);
}
VERYHIGH_MSG("Grim reaper stop");
}
/// Ignores everything. Separate thread handles waiting for children.
void Util::Procs::childsig_handler(int signum){
return;
}
/// Runs the given command and returns the stdout output as a string.
/// \param maxWait amount of milliseconds to wait for new output to come in over stdout before aborting
std::string Util::Procs::getOutputOf(char *const *argv, uint64_t maxWait){
int fin = 0, fout = -1, ferr = 0;
uint64_t waitedFor = 0;
uint8_t tries = 0;
pid_t myProc = StartPiped(argv, &fin, &fout, &ferr);
Socket::Connection O(-1, fout);
O.setBlocking(false);
Util::ResizeablePointer ret;
while (childRunning(myProc) || O){
if (O.spool() || O.Received().size()){
waitedFor = 0;
tries = 0;
while (O.Received().size()){
std::string & t = O.Received().get();
ret.append(t);
t.clear();
}
}else{
if (maxWait && waitedFor > maxWait){
WARN_MSG("Timeout while getting output of '%s', returning %luB of data", (char *)argv, ret.size());
break;
}
else if(maxWait){
uint64_t waitTime = Util::expBackoffMs(tries++, 10, maxWait);
Util::sleep(waitTime);
waitedFor += waitTime;
}
else{
Util::sleep(50);
}
}
}
return std::string(ret, ret.size());
}
/// Runs the given command and returns the stdout output as a string.
/// \param maxWait amount of milliseconds to wait before shutting down the spawned process
/// \param maxValBytes amount of Bytes allowed in the output before shutting down the spawned process
std::string Util::Procs::getLimitedOutputOf(char *const *argv, uint64_t maxWait, uint32_t maxValBytes){
int fout = -1;
uint64_t waitedFor = 0;
uint8_t tries = 0;
pid_t myProc = StartPiped(argv, NULL, &fout, NULL);
Socket::Connection O(-1, fout);
O.setBlocking(false);
Util::ResizeablePointer ret;
std::string fullCmd;
uint8_t idx = 0;
while (argv[idx]){
fullCmd += argv[idx++];
fullCmd += " ";
}
while (childRunning(myProc) || O){
if (O.spool() || O.Received().size()){
tries = 0;
while (O.Received().size()){
std::string & t = O.Received().get();
ret.append(t);
t.clear();
}
}else{
if (waitedFor > maxWait){
WARN_MSG("Reached timeout of %lu ms. Killing process with command %s...", maxWait, fullCmd.c_str());
break;
}
else {
uint64_t waitTime = Util::expBackoffMs(tries++, 10, maxWait);
Util::sleep(waitTime);
waitedFor += waitTime;
}
}
if (ret.size() > maxValBytes){
WARN_MSG("Have a limit of %uB, but received %luB of data. Killing process with command %s...", maxValBytes, ret.size(), fullCmd.c_str());
break;
}
}
O.close();
// Stop the process if it is still running
if (childRunning(myProc)){
Stop(myProc);
waitedFor = 0;
}
// Give it a few seconds, but then forcefully stop it
while (childRunning(myProc)){
if (waitedFor > 2000){
Murder(myProc);
break;
}else{
waitedFor += 50;
Util::sleep(50);
}
}
return std::string(ret, ret.size());
}
/// This function prepares a deque for getOutputOf and automatically inserts a NULL at the end of the char* const*
char *const *Util::Procs::dequeToArgv(std::deque<std::string> &argDeq){
char **ret = (char **)malloc((argDeq.size() + 1) * sizeof(char *));
for (int i = 0; i < argDeq.size(); i++){ret[i] = (char *)argDeq[i].c_str();}
ret[argDeq.size()] = NULL;
return ret;
}
std::string Util::Procs::getOutputOf(std::deque<std::string> &argDeq, uint64_t maxWait){
std::string ret;
char *const *argv = dequeToArgv(argDeq); // Note: Do not edit deque before executing command
ret = getOutputOf(argv, maxWait);
return ret;
}
pid_t Util::Procs::StartPiped(std::deque<std::string> &argDeq, int *fdin, int *fdout, int *fderr){
pid_t ret;
char *const *argv = dequeToArgv(argDeq); // Note: Do not edit deque before executing command
ret = Util::Procs::StartPiped(argv, fdin, fdout, fderr);
return ret;
}
/// Starts a new process with given fds if the name is not already active.
/// \return 0 if process was not started, process PID otherwise.
/// \arg argv Command for this process.
/// \arg fdin Standard input file descriptor. If null, /dev/null is assumed. Otherwise, if arg
/// contains -1, a new fd is automatically allocated and written into this arg. Then the arg will be
/// used as fd. \arg fdout Same as fdin, but for stdout. \arg fdout Same as fdin, but for stderr.
pid_t Util::Procs::StartPiped(const char *const *argv, int *fdin, int *fdout, int *fderr){
pid_t pid;
int pipein[2], pipeout[2], pipeerr[2];
setHandler();
if (fdin && *fdin == -1 && pipe(pipein) < 0){
ERROR_MSG("stdin pipe creation failed for process %s, reason: %s", argv[0], strerror(errno));
return 0;
}
if (fdout && *fdout == -1 && pipe(pipeout) < 0){
ERROR_MSG("stdout pipe creation failed for process %s, reason: %s", argv[0], strerror(errno));
if (*fdin == -1){
close(pipein[0]);
close(pipein[1]);
}
return 0;
}
if (fderr && *fderr == -1 && pipe(pipeerr) < 0){
ERROR_MSG("stderr pipe creation failed for process %s, reason: %s", argv[0], strerror(errno));
if (*fdin == -1){
close(pipein[0]);
close(pipein[1]);
}
if (*fdout == -1){
close(pipeout[0]);
close(pipeout[1]);
}
return 0;
}
int devnull = -1;
if (!fdin || !fdout || !fderr){
devnull = open("/dev/null", O_RDWR);
if (devnull == -1){
ERROR_MSG("Could not open /dev/null for process %s, reason: %s", argv[0], strerror(errno));
if (fdin && *fdin == -1){
close(pipein[0]);
close(pipein[1]);
}
if (fdout && *fdout == -1){
close(pipeout[0]);
close(pipeout[1]);
}
if (fderr && *fderr == -1){
close(pipeerr[0]);
close(pipeerr[1]);
}
return 0;
}
}
pid = fork();
if (pid == 0){// child
int ch_stdin = 0, ch_stdout = 0, ch_stderr = 0;
handler_set = false;
if (!fdin){
ch_stdin = dup(devnull);
}else if (*fdin == -1){
close(pipein[1]); // close unused write end
ch_stdin = dup(pipein[0]);
close(pipein[0]);
}else{
ch_stdin = dup(*fdin);
}
while (ch_stdin < 3){ch_stdin = dup(ch_stdin);}
if (!fdout){
ch_stdout = dup(devnull);
}else if (*fdout == -1){
close(pipeout[0]); // close unused read end
ch_stdout = dup(pipeout[1]);
close(pipeout[1]);
}else{
ch_stdout = dup(*fdout);
}
while (ch_stdout < 3){ch_stdout = dup(ch_stdout);}
if (!fderr){
ch_stderr = dup(devnull);
}else if (*fderr == -1){
close(pipeerr[0]); // close unused read end
ch_stderr = dup(pipeerr[1]);
close(pipeerr[1]);
}else{
ch_stderr = dup(*fderr);
}
while (ch_stderr < 3){ch_stderr = dup(ch_stderr);}
if (fdin && *fdin != -1){close(*fdin);}
if (fdout && *fdout != -1){close(*fdout);}
if (fderr && *fderr != -1){close(*fderr);}
if (devnull != -1){close(devnull);}
// Close all sockets in the socketList
for (std::set<int>::iterator it = Util::Procs::socketList.begin();
it != Util::Procs::socketList.end(); ++it){
close(*it);
}
//Black magic to make sure if 0/1/2 are not what we think they are, we end up with them not mixed up and weird.
dup2(ch_stdin, 0);
dup2(ch_stdout, 1);
dup2(ch_stderr, 2);
close(ch_stdout);
close(ch_stdin);
close(ch_stderr);
//There! Now we normalized our stdio
// Because execvp requires a char* const* and we have a const char* const*
execvp(argv[0], (char *const *)argv);
/*LTS-START*/
char *trggr = getenv("MIST_TRIGGER");
if (trggr && strlen(trggr)){
ERROR_MSG("%s trigger failed to execute %s: %s", trggr, argv[0], strerror(errno));
JSON::Value j;
j["trigger_fail"] = trggr;
Socket::UDPConnection uSock;
uSock.SetDestination(UDP_API_HOST, UDP_API_PORT);
uSock.SendNow(j.toString());
std::cout << getenv("MIST_TRIG_DEF");
_exit(42);
}
/*LTS-END*/
ERROR_MSG("execvp failed for process %s, reason: %s", argv[0], strerror(errno));
_exit(42);
}else if (pid == -1){
ERROR_MSG("fork failed for process %s, reason: %s", argv[0], strerror(errno));
if (fdin && *fdin == -1){
close(pipein[0]);
close(pipein[1]);
}
if (fdout && *fdout == -1){
close(pipeout[0]);
close(pipeout[1]);
}
if (fderr && *fderr == -1){
close(pipeerr[0]);
close(pipeerr[1]);
}
if (devnull != -1){close(devnull);}
return 0;
}else{// parent
{
tthread::lock_guard<tthread::mutex> guard(plistMutex);
plist.insert(pid);
}
HIGH_MSG("Piped process %s started, PID %d", argv[0], pid);
if (devnull != -1){close(devnull);}
if (fdin && *fdin == -1){
close(pipein[0]); // close unused end end
*fdin = pipein[1];
}
if (fdout && *fdout == -1){
close(pipeout[1]); // close unused write end
*fdout = pipeout[0];
}
if (fderr && *fderr == -1){
close(pipeerr[1]); // close unused write end
*fderr = pipeerr[0];
}
}
return pid;
}
/// Stops the process with this pid, if running.
/// \arg name The PID of the process to stop.
void Util::Procs::Stop(pid_t name){
kill(name, SIGTERM);
}
/// Stops the process with this pid, if running.
/// \arg name The PID of the process to murder.
void Util::Procs::Murder(pid_t name){
kill(name, SIGKILL);
}
/// (Attempts to) stop all running child processes.
void Util::Procs::StopAll(){
std::set<pid_t> listcopy;
{
tthread::lock_guard<tthread::mutex> guard(plistMutex);
listcopy = plist;
}
std::set<pid_t>::iterator it;
for (it = listcopy.begin(); it != listcopy.end(); it++){Stop(*it);}
}
/// Returns the number of active child processes.
int Util::Procs::Count(){
tthread::lock_guard<tthread::mutex> guard(plistMutex);
return plist.size();
}
/// Returns true if a process with this PID is currently active.
bool Util::Procs::isActive(pid_t name){
tthread::lock_guard<tthread::mutex> guard(plistMutex);
return (kill(name, 0) == 0);
}
/// Forget about the given PID, keeping it running on shutdown.
void Util::Procs::forget(pid_t pid){
tthread::lock_guard<tthread::mutex> guard(plistMutex);
plist.erase(pid);
}
/// Remember the given PID, killing it on shutdown.
void Util::Procs::remember(pid_t pid){
tthread::lock_guard<tthread::mutex> guard(plistMutex);
plist.insert(pid);
}