mistserver/Connector_RTMPf/amf.cpp

285 lines
9.2 KiB
C++

#include <vector>
#include <string.h>
#include <string>
class AMFType {
public:
std::string Indice(){return myIndice;};
unsigned char GetType(){return myType;};
double NumValue(){return numval;};
std::string StrValue(){return strval;};
const char * Str(){return strval.c_str();};
int hasContent(){
if (!contents){return 0;}
return contents->size();
};
void addContent(AMFType c){if (contents != 0){contents->push_back(c);}};
AMFType* getContentP(int i){if (contents != 0){return &contents->at(i);}else{return 0;}};
AMFType getContent(int i){if (contents != 0){return contents->at(i);}else{return AMFType("error");}};
AMFType* getContentP(std::string s){
if (contents != 0){
for (std::vector<AMFType>::iterator it = contents->begin(); it != contents->end(); it++){
if (it->Indice() == s){
return &(*it);
}
}
}
return this;
};
AMFType getContent(std::string s){
if (contents != 0){
for (std::vector<AMFType>::iterator it = contents->begin(); it != contents->end(); it++){
if (it->Indice() == s){
return *it;
}
}
}
return AMFType("error");
};
AMFType(std::string indice, double val, unsigned char setType = 0x00){//num type initializer
myIndice = indice;
myType = setType;
strval = "";
numval = val;
contents = 0;
};
AMFType(std::string indice, std::string val, unsigned char setType = 0x02){//str type initializer
myIndice = indice;
myType = setType;
strval = val;
numval = 0;
contents = 0;
};
AMFType(std::string indice, unsigned char setType = 0x03){//object type initializer
myIndice = indice;
myType = setType;
strval = "";
numval = 0;
contents = new std::vector<AMFType>;
};
~AMFType(){if (contents != 0){delete contents;contents=0;}};
AMFType& operator=(const AMFType &a) {
myIndice = a.myIndice;
myType = a.myType;
strval = a.strval;
numval = a.numval;
if (contents){
if (a.contents != contents){
delete contents;
if (a.contents){
contents = new std::vector<AMFType>;
for (std::vector<AMFType>::iterator it = a.contents->begin(); it < a.contents->end(); it++){
contents->push_back(*it);
}
}else{
contents = 0;
}
}
}else{
if (a.contents){
contents = new std::vector<AMFType>;
for (std::vector<AMFType>::iterator it = a.contents->begin(); it < a.contents->end(); it++){
contents->push_back(*it);
}
}
}
return *this;
};//= operator
AMFType(const AMFType &a){
myIndice = a.myIndice;
myType = a.myType;
strval = a.strval;
numval = a.numval;
if (a.contents){
contents = new std::vector<AMFType>;
for (std::vector<AMFType>::iterator it = a.contents->begin(); it < a.contents->end(); it++){
contents->push_back(*it);
}
}else{contents = 0;}
};//copy constructor
void Print(std::string indent = ""){
std::cerr << indent;
switch (myType){
case 0x00: std::cerr << "Number"; break;
case 0x01: std::cerr << "Bool"; break;
case 0x02://short string
case 0x0C: std::cerr << "String"; break;
case 0x03: std::cerr << "Object"; break;
case 0x08: std::cerr << "ECMA Array"; break;
case 0x05: std::cerr << "Null"; break;
case 0x06: std::cerr << "Undefined"; break;
case 0x0D: std::cerr << "Unsupported"; break;
case 0xFF: std::cerr << "Container"; break;
}
std::cerr << " " << myIndice << " ";
switch (myType){
case 0x00: case 0x01: std::cerr << numval; break;
case 0x02: case 0x0C: std::cerr << strval; break;
}
std::cerr << std::endl;
if (contents){
for (std::vector<AMFType>::iterator it = contents->begin(); it != contents->end(); it++){it->Print(indent+" ");}
}
};//print
std::string Pack(){
std::string r = "";
if ((myType == 0x02) && (strval.size() > 0xFFFF)){myType = 0x0C;}
if (myType != 0xFF){r += myType;}
switch (myType){
case 0x00://number
r += *(((char*)&numval)+7); r += *(((char*)&numval)+6);
r += *(((char*)&numval)+5); r += *(((char*)&numval)+4);
r += *(((char*)&numval)+3); r += *(((char*)&numval)+2);
r += *(((char*)&numval)+1); r += *(((char*)&numval));
break;
case 0x01://bool
r += (char)numval;
break;
case 0x02://short string
r += strval.size() / 256;
r += strval.size() % 256;
r += strval;
break;
case 0x0C://long string
r += strval.size() / (256*256*256);
r += strval.size() / (256*256);
r += strval.size() / 256;
r += strval.size() % 256;
r += strval;
break;
case 0x03://object
if (contents){
for (std::vector<AMFType>::iterator it = contents->begin(); it != contents->end(); it++){
r += it->Indice().size() / 256;
r += it->Indice().size() % 256;
r += it->Indice();
r += it->Pack();
}
}
r += (char)0; r += (char)0; r += (char)9;
break;
case 0x08:{//array
int arrlen = 0;
if (contents){
arrlen = getContentP("length")->NumValue();
r += arrlen / (256*256*256); r += arrlen / (256*256); r += arrlen / 256; r += arrlen % 256;
for (std::vector<AMFType>::iterator it = contents->begin(); it != contents->end(); it++){
r += it->Indice().size() / 256;
r += it->Indice().size() % 256;
r += it->Indice();
r += it->Pack();
}
}else{
r += (char)0; r += (char)0; r += (char)0; r += (char)0;
}
r += (char)0; r += (char)0; r += (char)9;
} break;
case 0xFF://container - our own type - do not send, only send contents
if (contents){
for (std::vector<AMFType>::iterator it = contents->begin(); it != contents->end(); it++){
r += it->Pack();
}
}
break;
}
return r;
};//pack
protected:
std::string myIndice;
unsigned char myType;
std::string strval;
double numval;
std::vector<AMFType> * contents;
};//AMFType
AMFType parseOneAMF(const unsigned char *& data, unsigned int &len, unsigned int &i, std::string name){
char * helperchar = 0;
std::string tmpstr;
unsigned int tmpi = 0;
unsigned char tmpdbl[8];
switch (data[i]){
case 0x00://number
tmpdbl[7] = data[i+1];
tmpdbl[6] = data[i+2];
tmpdbl[5] = data[i+3];
tmpdbl[4] = data[i+4];
tmpdbl[3] = data[i+5];
tmpdbl[2] = data[i+6];
tmpdbl[1] = data[i+7];
tmpdbl[0] = data[i+8];
i+=9;
return AMFType(name, *(double*)tmpdbl, 0x00);
break;
case 0x01://bool
i+=2;
if (data[i-1] == 0){
return AMFType(name, (double)0, 0x01);
}else{
return AMFType(name, (double)1, 0x01);
}
break;
case 0x0C://long string
tmpi = data[i+1]*256*256*256+data[i+2]*256*256+data[i+3]*256+data[i+4];
helperchar = (char*)malloc(tmpi+1);
memcpy(helperchar, data+i+5, tmpi);
helperchar[tmpi] = 0;
tmpstr = helperchar;
free(helperchar);
i += tmpi + 5;
return AMFType(name, tmpstr, 0x0C);
break;
case 0x02://string
tmpi = data[i+1]*256+data[i+2];
helperchar = (char*)malloc(tmpi+1);
memcpy(helperchar, data+i+3, tmpi);
helperchar[tmpi] = 0;
tmpstr = helperchar;
free(helperchar);
i += tmpi + 3;
return AMFType(name, tmpstr, 0x02);
break;
case 0x05://null
case 0x06://undefined
case 0x0D://unsupported
++i;
return AMFType(name, (double)0, data[i-1]);
break;
case 0x03:{//object
++i;
AMFType ret = AMFType(name, data[i-1]);
while (data[i] + data[i+1] != 0){
tmpi = data[i]*256+data[i+1];
tmpstr = (char*)(data+i+2);
i += tmpi + 2;
ret.addContent(parseOneAMF(data, len, i, tmpstr));
}
i += 3;
return ret;
} break;
case 0x08:{//ECMA array
++i;
AMFType ret = AMFType(name, data[i-1]);
i += 4;
while (data[i] + data[i+1] != 0){
tmpi = data[i]*256+data[i+1];
tmpstr = (char*)(data+i+2);
i += tmpi + 2;
ret.addContent(parseOneAMF(data, len, i, tmpstr));
}
i += 3;
return ret;
} break;
}
#ifdef DEBUG
fprintf(stderr, "Error: Unimplemented AMF type %hhx - returning.\n", data[i]);
#endif
return AMFType("error", (unsigned char)0xFF);
}//parseOneAMF
AMFType parseAMF(const unsigned char * data, unsigned int len){
AMFType ret("returned", (unsigned char)0xFF);//container type
unsigned int i = 0;
while (i < len){ret.addContent(parseOneAMF(data, len, i, ""));}
return ret;
}//parseAMF
AMFType parseAMF(std::string data){return parseAMF((const unsigned char*)data.c_str(), data.size());}