mistserver/lib/mp4.cpp
2012-09-26 14:42:05 +02:00

776 lines
26 KiB
C++

#include <stdlib.h> //for malloc and free
#include <string.h> //for memcpy
#include <arpa/inet.h> //for htonl and friends
#include "mp4.h"
#include "json.h"
/// Contains all MP4 format related code.
namespace MP4{
/// Creates a new box, optionally using the indicated pointer for storage.
/// If manage is set to true, the pointer will be realloc'ed when the box needs to be resized.
/// If the datapointer is NULL, manage is assumed to be true even if explicitly given as false.
/// If managed, the pointer will be free'd upon destruction.
Box::Box(char * datapointer, bool manage){
data = datapointer;
managed = manage;
if (data == 0){
clear();
}else{
data_size = ntohl(((int*)data)[0]);
}
}
/// If managed, this will free the data pointer.
Box::~Box(){
if (managed && data != 0){
free(data);
data = 0;
}
}
/// Returns the values at byte positions 4 through 7.
std::string Box::getType() {
return std::string(data+4,4);
}
/// Returns true if the given 4-byte boxtype is equal to the values at byte positions 4 through 7.
bool Box::isType( char* boxType ) {
return !memcmp(boxType, data + 4, 4);
}
/// Reads out a whole box (if possible) from newData, copying to the internal data storage and removing from the input string.
/// \returns True on success, false otherwise.
bool Box::read(std::string & newData){
if (!managed){return false;}
if (newData.size() > 4){
size_t size = ntohl( ((int*)newData.c_str())[0] );
if (newData.size() >= size){
void * ret = malloc(size);
if (!ret){return false;}
free(data);
data = ret;
memcpy(data, newData.c_str(), size);
newData.erase( 0, size );
return true;
}
}
return false;
}
/// Returns the total boxed size of this box, including the header.
size_t Box::boxedSize() {
return ntohl(((int*)data)[0]);
}
/// Retruns the size of the payload of thix box, excluding the header.
/// This value is defined as boxedSize() - 8.
size_t Box::payloadSize() {
return boxedSize() - 8;
}
/// Returns a copy of the data pointer.
char * Box::asBox() {
return data;
}
/// Makes this box managed if it wasn't already, resetting the internal storage to 8 bytes (the minimum).
/// If this box wasn't managed, the original data is left intact - otherwise it is free'd.
/// If it was somehow impossible to allocate 8 bytes (should never happen), this will cause segfaults later.
void Box::clear() {
if (data && managed){free(data);}
managed = true;
data = malloc(8);
if (data){
data_size = 8;
((int*)data)[0] = htonl(data_size);
}else{
data_size = 0;
}
}
/// Attempts to typecast this Box to a more specific type and call the toPrettyString() function of that type.
/// If this failed, it will print out a message saying pretty-printing is not implemented for <boxtype>.
std::string Box::toPrettyString(int indent){
switch( ntohl(((int*)data.c_str())[1]) ) { //type is at this address
case 0x6D666864: return ((MFHD*)this)->toPrettyString(indent); break;
case 0x6D6F6F66: return ((MOOF*)this)->toPrettyString(indent); break;
case 0x61627374: return ((ABST*)this)->toPrettyString(indent); break;
case 0x61667274: return ((AFRT*)this)->toPrettyString(indent); break;
case 0x61737274: return ((ASRT*)this)->toPrettyString(indent); break;
default: return std::string(indent, ' ')+"Unimplemented pretty-printing for box "+std::string(data,4,4)+"\n"; break;
}
}
/// Sets the 8 bits integer at the given index.
/// Attempts to resize the data pointer if the index is out of range.
/// Fails silently if resizing failed.
void Box::setInt8( char newData, size_t index ) {
index += 8;
if (index >= boxedSize()){
if (!reserve(index, 0, 1)){return;}
}
data[index] = newData;
}
/// Gets the 8 bits integer at the given index.
/// Attempts to resize the data pointer if the index is out of range.
/// Returns zero if resizing failed.
char Box::getInt8( size_t index ) {
index += 8;
if (index >= boxedSize()){
if (!reserve(index, 0, 1)){return 0;}
}
return data[index];
}
/// Sets the 16 bits integer at the given index.
/// Attempts to resize the data pointer if the index is out of range.
/// Fails silently if resizing failed.
void Box::setInt16( short newData, size_t index ) {
index += 8;
if (index+1 >= boxedSize()){
if (!reserve(index, 0, 2)){return;}
}
newData = htons( newData );
memcpy( (void*)(data.c_str() + index), (void*)&newData, 2 );
}
/// Gets the 16 bits integer at the given index.
/// Attempts to resize the data pointer if the index is out of range.
/// Returns zero if resizing failed.
short Box::getInt16( size_t index ) {
index += 8;
if (index+1 >= boxedSize()){
if (!reserve(index, 0, 2)){return 0;}
}
short result;
memcpy( (void*)&result, (void*)(data.c_str() + index), 2 );
return ntohs(result);
}
/// Sets the 24 bits integer at the given index.
/// Attempts to resize the data pointer if the index is out of range.
/// Fails silently if resizing failed.
void Box::setInt24( long newData, size_t index ) {
index += 8;
if (index+2 >= boxedSize()){
if (!reserve(index, 0, 3)){return;}
}
data[index] = (newData & 0x00FF0000) >> 16;
data[index+1] = (newData & 0x0000FF00) >> 8;
data[index+2] = (newData & 0x000000FF);
}
/// Gets the 24 bits integer at the given index.
/// Attempts to resize the data pointer if the index is out of range.
/// Returns zero if resizing failed.
long Box::getInt24( size_t index ) {
index += 8;
if (index+2 >= boxedSize()){
if (!reserve(index, 0, 3)){return 0;}
}
long result = data[index];
result <<= 8;
result += data[index+1];
result <<= 8;
result += data[index+2];
return result;
}
/// Sets the 32 bits integer at the given index.
/// Attempts to resize the data pointer if the index is out of range.
/// Fails silently if resizing failed.
void Box::setInt32( long newData, size_t index ) {
index += 8;
if (index+3 >= boxedSize()){
if (!reserve(index, 0, 4)){return;}
}
newData = htonl( newData );
memcpy( (char*)data.c_str() + index, (char*)&newData, 4 );
}
/// Gets the 32 bits integer at the given index.
/// Attempts to resize the data pointer if the index is out of range.
/// Returns zero if resizing failed.
long Box::getInt32( size_t index ) {
index += 8;
if (index+3 >= boxedSize()){
if (!reserve(index, 0, 4)){return 0;}
}
long result;
memcpy( (char*)&result, (char*)data.c_str() + index, 4 );
return ntohl(result);
}
/// Sets the 64 bits integer at the given index.
/// Attempts to resize the data pointer if the index is out of range.
/// Fails silently if resizing failed.
void Box::setInt64( long long int newData, size_t index ) {
index += 8;
if (index+7 >= boxedSize()){
if (!reserve(index, 0, 8)){return;}
}
data[index] = ( newData & 0xFF00000000000000 ) >> 56;
data[index+1] = ( newData & 0x00FF000000000000 ) >> 48;
data[index+2] = ( newData & 0x0000FF0000000000 ) >> 40;
data[index+3] = ( newData & 0x000000FF00000000 ) >> 32;
data[index+4] = ( newData & 0x00000000FF000000 ) >> 24;
data[index+5] = ( newData & 0x0000000000FF0000 ) >> 16;
data[index+6] = ( newData & 0x000000000000FF00 ) >> 8;
data[index+7] = ( newData & 0x00000000000000FF );
}
/// Gets the 64 bits integer at the given index.
/// Attempts to resize the data pointer if the index is out of range.
/// Returns zero if resizing failed.
long long int Box::getInt64( size_t index ) {
index += 8;
if (index+7 >= boxedSize()){
if (!reserve(index, 0, 8)){return 0;}
}
long result = data[index];
result <<= 8; result += data[index+1];
result <<= 8; result += data[index+2];
result <<= 8; result += data[index+3];
result <<= 8; result += data[index+4];
result <<= 8; result += data[index+5];
result <<= 8; result += data[index+6];
result <<= 8; result += data[index+7];
return result;
}
/// Sets the NULL-terminated string at the given index.
/// Will attempt to resize if the string doesn't fit.
/// Fails silently if resizing failed.
void Box::setString(std::string newData, size_t index ) {
setString( (char*)newData.c_str(), newData.size(), index );
}
/// Sets the NULL-terminated string at the given index.
/// Will attempt to resize if the string doesn't fit.
/// Fails silently if resizing failed.
void Box::setString(char* newData, size_t size, size_t index ) {
index += 8;
if (index >= boxedSize()){
if (!reserve(index, 0, 1)){return;}
data[index] = 0;
}
if (getStringLen(index) != size){
if (!reserve(index, getStringLen(index)+1, size+1)){return;}
}
memcpy(data + index, newData, size+1);
}
/// Gets the NULL-terminated string at the given index.
/// Will attempt to resize if the string is out of range.
/// Returns null if resizing failed.
char * Box::getString(size_t index){
index += 8;
if (index >= boxedSize()){
if (!reserve(index, 0, 1)){return 0;}
data[index] = 0;
}
return data+index;
}
/// Returns the length of the NULL-terminated string at the given index.
/// Returns 0 if out of range.
size_t Box::getStringLen(size_t index){
index += 8;
if (index >= boxedSize()){return 0;}
return strlen(data+index);
}
/// Attempts to reserve enough space for wanted bytes of data at given position, where current bytes of data is now reserved.
/// This will move any existing data behind the currently reserved space to the proper location after reserving.
/// \returns True on success, false otherwise.
bool reserve(size_t position, size_t current, size_t wanted){
if (current == wanted){return true;}
if (current < wanted){
//make bigger
if (boxedSize() + (wanted-current) > data_size){
//realloc if managed, otherwise fail
if (!managed){return false;}
void * ret = realloc(data, boxedSize() + (wanted-current));
if (!ret){return false;}
data = ret;
data_size = boxedSize() + (wanted-current);
}
//move data behind backward, if any
if (boxedSize() - (position+current) > 0){
memmove(position+wanted, position+current, boxedSize() - (position+current));
}
//calculate and set new size
int newSize = boxedSize() + (wanted-current);
((int*)data)[0] = htonl(newSize);
return true;
}else{
//make smaller
//move data behind forward, if any
if (boxedSize() - (position+current) > 0){
memmove(position+wanted, position+current, boxedSize() - (position+current));
}
//calculate and set new size
int newSize = boxedSize() - (current-wanted);
((int*)data)[0] = htonl(newSize);
return true;
}
}
ABST::ABST( ) : Box("abst") {
setVersion( 0 );
setFlags( 0 );
setBootstrapinfoVersion( 0 );
setProfile( 0 );
setLive( 1 );
setUpdate( 0 );
setTimeScale( 1000 );
setCurrentMediaTime( 0 );
setSmpteTimeCodeOffset( 0 );
setMovieIdentifier( "" );
setDrmData( "" );
setMetaData( "" );
}
void ABST::setVersion( char newVersion ) {
setInt8( newVersion, 0 );
}
void ABST::setFlags( long newFlags ) {
setInt24( newFlags, 1 );
}
void ABST::setBootstrapinfoVersion( long newVersion ) {
setInt32( newVersion, 4 );
}
void ABST::setProfile( char newProfile ) {
setInt8((getInt8(8) & 0x3F) + ((newProfile & 0x02) << 6), 8);
}
void ABST::setLive( char newLive ) {
setInt8((getInt8(8) & 0xDF) + ((newLive & 0x01) << 5), 8);
}
void ABST::setUpdate( char newUpdate ) {
setInt8((getInt8(8) & 0xEF) + ((newUpdate & 0x01) << 4), 8);
}
void ABST::setTimeScale( long newScale ) {
setInt32(newScale, 9);
}
void ABST::setCurrentMediaTime( long long int newTime ) {
setInt64( newTime, 13);
}
void ABST::setSmpteTimeCodeOffset( long long int newTime ) {
setInt64( newTime, 21);
}
void ABST::setMovieIdentifier( std::string newIdentifier ) {
movieIdentifier = newIdentifier;
isUpdated = true;
}
void ABST::addServerEntry( std::string newEntry ) {
if( std::find( Servers.begin(), Servers.end(), newEntry ) == Servers.end() ) {
Servers.push_back( newEntry );
isUpdated = true;
}
}
void ABST::delServerEntry( std::string delEntry ) {
for( std::deque<std::string>::iterator it = Servers.begin(); it != Servers.end(); it++ ) {
if( (*it) == delEntry ) {
Servers.erase( it );
isUpdated = true;
break;
}
}
}
void ABST::addQualityEntry( std::string newEntry ) {
if( std::find( Qualities.begin(), Qualities.end(), newEntry ) == Qualities.end() ) {
Servers.push_back( newEntry );
isUpdated = true;
}
}
void ABST::delQualityEntry( std::string delEntry ) {
for( std::deque<std::string>::iterator it = Qualities.begin(); it != Qualities.end(); it++ ) {
if( (*it) == delEntry ) {
Qualities.erase( it );
isUpdated = true;
break;
}
}
}
void ABST::setDrmData( std::string newDrm ) {
drmData = newDrm;
isUpdated = true;
}
void ABST::setMetaData( std::string newMetaData ) {
metaData = newMetaData;
isUpdated = true;
}
void ABST::addSegmentRunTable( Box * newSegment ) {
segmentTables.push_back(newSegment);
isUpdated = true;
}
void ABST::addFragmentRunTable( Box * newFragment ) {
fragmentTables.push_back(newFragment);
isUpdated = true;
}
void ABST::regenerate( ) {
if (!isUpdated){return;}//skip if already up to date
data.resize(29);
int myOffset = 29;
//0-terminated movieIdentifier
memcpy( (char*)data.c_str() + myOffset, movieIdentifier.c_str(), movieIdentifier.size() + 1);
myOffset += movieIdentifier.size() + 1;
//8-bit server amount
setInt8( Servers.size(), myOffset );
myOffset ++;
//0-terminated string for each entry
for( std::deque<std::string>::iterator it = Servers.begin(); it != Servers.end(); it++ ) {
memcpy( (char*)data.c_str() + myOffset, (*it).c_str(), (*it).size() + 1);
myOffset += (*it).size() + 1;
}
//8-bit quality amount
setInt8( Qualities.size(), myOffset );
myOffset ++;
//0-terminated string for each entry
for( std::deque<std::string>::iterator it = Qualities.begin();it != Qualities.end(); it++ ) {
memcpy( (char*)data.c_str() + myOffset, (*it).c_str(), (*it).size() + 1);
myOffset += (*it).size() + 1;
}
//0-terminated DrmData
memcpy( (char*)data.c_str() + myOffset, drmData.c_str(), drmData.size() + 1);
myOffset += drmData.size() + 1;
//0-terminated MetaData
memcpy( (char*)data.c_str() + myOffset, metaData.c_str(), metaData.size() + 1);
myOffset += metaData.size() + 1;
//8-bit segment run amount
setInt8( segmentTables.size(), myOffset );
myOffset ++;
//retrieve box for each entry
for( std::deque<Box*>::iterator it = segmentTables.begin(); it != segmentTables.end(); it++ ) {
memcpy( (char*)data.c_str() + myOffset, (*it)->asBox().c_str(), (*it)->boxedSize() );
myOffset += (*it)->boxedSize();
}
//8-bit fragment run amount
setInt8( fragmentTables.size(), myOffset );
myOffset ++;
//retrieve box for each entry
for( std::deque<Box*>::iterator it = fragmentTables.begin(); it != fragmentTables.end(); it++ ) {
memcpy( (char*)data.c_str() + myOffset, (*it)->asBox().c_str(), (*it)->boxedSize() + 1);
myOffset += (*it)->boxedSize();
}
isUpdated = false;
}
std::string ABST::toPrettyString( int indent ) {
regenerate();
std::stringbuffer r;
r << std::string(indent, ' ') << "Bootstrap Info" << std::endl;
r << std::string(indent+1, ' ') << "Version " << getInt8(0) << std::endl;
if( getInt8(5) & 0x10 ) {
r << std::string(indent+1, ' ') << "Update" << std::endl;
} else {
r << std::string(indent+1, ' ') << "Replacement or new table" << std::endl;
}
if( getInt8(5) & 0x20 ) {
r << std::string(indent+1, ' ' ) << "Live" << std::endl;
}else{
r << std::string(indent+1, ' ' ) << "Recorded" << std::endl;
}
r << std::string(indent+1, ' ') << "Profile " << ( getInt8(5) & 0xC0 ) << std::endl;
r << std::string(indent+1, ' ') << "Timescale " << getInt64(10) << std::endl;
r << std::string(indent+1, ' ') << "CurrMediaTime " << getInt32(6) << std::endl;
r << std::string(indent+1, ' ') << "Segment Run Tables " << segmentTables.size() << std::endl;
for( uint32_t i = 0; i < segmentTables.size(); i++ ) {
r += segmentTables[i]->toPrettyString(indent+2);
}
r += std::string(indent+1, ' ')+"Fragment Run Tables "+JSON::Value((long long int)fragmentTables.size()).asString()+"\n";
for( uint32_t i = 0; i < fragmentTables.size(); i++ ) {
r += fragmentTables[i]->toPrettyString(indent+2);
}
return r.str();
}
AFRT::AFRT() : Box("afrt"){
setVersion( 0 );
setUpdate( 0 );
setTimeScale( 1000 );
}
void AFRT::setVersion( char newVersion ) {
setInt8( newVersion ,0 );
}
void AFRT::setUpdate( long newUpdate ) {
setInt24( newUpdate, 1 );
}
void AFRT::setTimeScale( long newScale ) {
setInt32( newScale, 4 );
}
void AFRT::addQualityEntry( std::string newQuality ) {
qualityModifiers.push_back( newQuality );
isUpdated = true;
}
void AFRT::addFragmentRun( long firstFragment, long long int firstTimestamp, long duration, char discontinuity ) {
fragmentRun newRun;
newRun.firstFragment = firstFragment;
newRun.firstTimestamp = firstTimestamp;
newRun.duration = duration;
newRun.discontinuity = discontinuity;
fragmentRunTable.push_back( newRun );
isUpdated = true;
}
void AFRT::regenerate( ) {
if (!isUpdated){return;}//skip if already up to date
data.resize( 8 );
int myOffset = 8;
setInt8( qualityModifiers.size(), myOffset );
myOffset ++;
//0-terminated string for each entry
for( std::deque<std::string>::iterator it = qualityModifiers.begin();it != qualityModifiers.end(); it++ ) {
memcpy( (char*)data.c_str() + myOffset, (*it).c_str(), (*it).size() + 1);
myOffset += (*it).size() + 1;
}
setInt32( fragmentRunTable.size(), myOffset );
myOffset += 4;
//table values for each entry
for( std::deque<fragmentRun>::iterator it = fragmentRunTable.begin();it != fragmentRunTable.end(); it++ ) {
setInt32( (*it).firstFragment, myOffset );
myOffset += 4;
setInt64( (*it).firstTimestamp, myOffset );
myOffset += 8;
setInt32( (*it).duration, myOffset );
myOffset += 4;
setInt8( (*it).discontinuity, myOffset );
myOffset += 1;
}
isUpdated = false;
}
std::string AFRT::toPrettyString(int indent){
std::string r;
r += std::string(indent, ' ')+"Fragment Run Table\n";
if (getInt24(1)){
r += std::string(indent+1, ' ')+"Update\n";
}else{
r += std::string(indent+1, ' ')+"Replacement or new table\n";
}
r += std::string(indent+1, ' ')+"Timescale "+JSON::Value((long long int)getInt32(4)).asString()+"\n";
r += std::string(indent+1, ' ')+"Qualities "+JSON::Value((long long int)qualityModifiers.size()).asString()+"\n";
for( uint32_t i = 0; i < qualityModifiers.size(); i++ ) {
r += std::string(indent+2, ' ')+"\""+qualityModifiers[i]+"\"\n";
}
r += std::string(indent+1, ' ')+"Fragments "+JSON::Value((long long int)fragmentRunTable.size()).asString()+"\n";
for( uint32_t i = 0; i < fragmentRunTable.size(); i ++ ) {
r += std::string(indent+2, ' ')+"Duration "+JSON::Value((long long int)fragmentRunTable[i].duration).asString()+", starting at "+JSON::Value((long long int)fragmentRunTable[i].firstFragment).asString()+" @ "+JSON::Value((long long int)fragmentRunTable[i].firstTimestamp).asString()+"\n";
}
return r;
}
ASRT::ASRT() : Box("asrt") {
setVersion( 0 );
setUpdate( 0 );
}
void ASRT::setVersion( char newVersion ) {
setInt8( newVersion, 0 );
}
void ASRT::setUpdate( long newUpdate ) {
setInt24( newUpdate, 1 );
}
void ASRT::addQualityEntry( std::string newQuality ) {
qualityModifiers.push_back( newQuality );
isUpdated = true;
}
void ASRT::addSegmentRun( long firstSegment, long fragmentsPerSegment ) {
segmentRun newRun;
newRun.firstSegment = firstSegment;
newRun.fragmentsPerSegment = fragmentsPerSegment;
segmentRunTable.push_back( newRun );
isUpdated = true;
}
void ASRT::regenerate( ) {
if (!isUpdated){return;}//skip if already up to date
data.resize( 4 );
int myOffset = 4;
setInt8( qualityModifiers.size(), myOffset );
myOffset ++;
//0-terminated string for each entry
for( std::deque<std::string>::iterator it = qualityModifiers.begin();it != qualityModifiers.end(); it++ ) {
memcpy( (char*)data.c_str() + myOffset, (*it).c_str(), (*it).size() + 1);
myOffset += (*it).size() + 1;
}
setInt32( segmentRunTable.size(), myOffset );
myOffset += 4;
//table values for each entry
for( std::deque<segmentRun>::iterator it = segmentRunTable.begin();it != segmentRunTable.end(); it++ ) {
setInt32( (*it).firstSegment, myOffset );
myOffset += 4;
setInt32( (*it).fragmentsPerSegment, myOffset );
myOffset += 4;
}
isUpdated = false;
}
std::string ASRT::toPrettyString(int indent){
std::string r;
r += std::string(indent, ' ')+"Segment Run Table\n";
if (getInt24(1)){
r += std::string(indent+1, ' ')+"Update\n";
}else{
r += std::string(indent+1, ' ')+"Replacement or new table\n";
}
r += std::string(indent+1, ' ')+"Qualities "+JSON::Value((long long int)qualityModifiers.size()).asString()+"\n";
for( uint32_t i = 0; i < qualityModifiers.size(); i++ ) {
r += std::string(indent+2, ' ')+"\""+qualityModifiers[i]+"\"\n";
}
r += std::string(indent+1, ' ')+"Segments "+JSON::Value((long long int)segmentRunTable.size()).asString()+"\n";
for( uint32_t i = 0; i < segmentRunTable.size(); i ++ ) {
r += std::string(indent+2, ' ')+JSON::Value((long long int)segmentRunTable[i].fragmentsPerSegment).asString()+" fragments per, starting at "+JSON::Value((long long int)segmentRunTable[i].firstSegment).asString()+"\n";
}
return r;
}
MFHD::MFHD() : Box("mfhd") {
setInt32(0,0);
}
void MFHD::setSequenceNumber( long newSequenceNumber ) {
setInt32( newSequenceNumber, 4 );
}
std::string MFHD::toPrettyString( int indent ) {
std::string r;
r += std::string(indent, ' ')+"Movie Fragment Header\n";
r += std::string(indent+1, ' ')+"SequenceNumber: "+JSON::Value((long long int)getInt32(4)).asString()+"\n";
}
MOOF::MOOF() : Box("moof") {}
void MOOF::addContent( Box* newContent ) {
content.push_back( newContent );
isUpdated = true;
}
void MOOF::regenerate() {
if (!isUpdated){return;}//skip if already up to date
data.resize( 0 );
int myOffset = 0;
//retrieve box for each entry
for( std::deque<Box*>::iterator it = content.begin(); it != content.end(); it++ ) {
memcpy( (char*)data.c_str() + myOffset, (*it)->asBox().c_str(), (*it)->boxedSize() + 1);
myOffset += (*it)->boxedSize();
}
isUpdated = false;
}
std::string MOOF::toPrettyString( int indent ) {
std::string r;
r += std::string(indent, ' ')+"Movie Fragment\n";
for( uint32_t i = 0; i < content.size(); i++ ) {
r += content[i]->toPrettyString(indent+2);
}
return r;
}
TRUN::TRUN() : Box("trun") {
setInt8(0,0);
}
void TRUN::setFlags( long newFlags ) {
setInt24(newFlags,1);
isUpdated = true;
}
void TRUN::setDataOffset( long newOffset ) {
dataOffset = newOffset;
isUpdated = true;
}
void TRUN::setFirstSampleFlags( char sampleDependsOn, char sampleIsDependedOn, char sampleHasRedundancy, char sampleIsDifferenceSample ) {
firstSampleFlags = getSampleFlags( sampleDependsOn, sampleIsDependedOn, sampleHasRedundancy, sampleIsDifferenceSample );
isUpdated = true;
}
void TRUN::addSampleInformation( long newDuration, long newSize, char sampleDependsOn, char sampleIsDependedOn, char sampleHasRedundancy,char sampleIsDifferenceSample, long newCompositionTimeOffset ) {
trunSampleInformation newSample;
newSample.sampleDuration = newDuration;
newSample.sampleSize = newSize;
newSample.sampleFlags = getSampleFlags( sampleDependsOn, sampleIsDependedOn, sampleHasRedundancy, sampleIsDifferenceSample );
newSample.sampleCompositionTimeOffset = newCompositionTimeOffset;
allSamples.push_back( newSample );
isUpdated = true;
}
long TRUN::getSampleFlags( char sampleDependsOn, char sampleIsDependedOn, char sampleHasRedundancy, char sampleIsDifferenceSample ) {
long sampleFlags = ( sampleDependsOn & 0x03 );
sampleFlags <<= 2;
sampleFlags += ( sampleIsDependedOn & 0x03 );
sampleFlags <<= 2;
sampleFlags += ( sampleHasRedundancy & 0x03 );
sampleFlags <<= 5;
sampleFlags += ( sampleIsDifferenceSample & 0x01 );
sampleFlags <<= 17;
sampleFlags += 0x0000FFFF;
return sampleFlags;
}
void TRUN::regenerate( ) {
if (!isUpdated){return;}//skip if already up to date
data.resize( 4 );
int myOffset = 4;
setInt32( allSamples.size(), myOffset );
myOffset += 4;
if( getInt24( 1 ) & 0x000001 ) {
setInt32( dataOffset, myOffset );
myOffset += 4;
}
if( getInt24( 1 ) & 0x000004 ) {
setInt32( firstSampleFlags, myOffset );
myOffset += 4;
}
for( std::deque<trunSampleInformation>::iterator it = allSamples.begin(); it != allSamples.end(); it++ ) {
if( getInt24( 1 ) & 0x000100 ) {
setInt32( (*it).sampleDuration, myOffset );
myOffset += 4;
}
if( getInt24( 1 ) & 0x000200 ) {
setInt32( (*it).sampleSize, myOffset );
myOffset += 4;
}
if( getInt24( 1 ) & 0x000400 ) {
setInt32( (*it).sampleFlags, myOffset );
myOffset += 4;
}
if( getInt24( 1 ) & 0x000800 ) {
setInt32( (*it).sampleCompositionTimeOffset, myOffset );
myOffset += 4;
}
}
isUpdated = false;
}
};